Stream Acidification Due to Mining in the Colorado Mineral Belt, Colorado

Aaron Hantsche Geo 327G 12/6/12

Problem

The Colorado Mineral belt is a highly mineralized stretch of Colorado across the Rocky Mountains. Rocks were enriched in metal ions, predominantly Gold, Silver, and Lead, during the Laramide Orogeny about 70-80 Ma. Chemical leaching processes used in the refining process by using reducing agents to drive off the extraneous material. This produces many toxic compounds, including sulfuric acid, and is used in the refinement of many of the metals found in the mineral belt. Can a map be used to provide insight on the types of mines affecting the pH in the region?

<u>Goal</u>

The goal was to use GIS techniques and spatial analysis to determine acidity levels in the rivers and streams in the Colorado Mineral Belt. By using spatial analysis and interpolation techniques, the streams can be assigned with pH data from the NURE- HSSR database. This data, coupled with the locations of metal mines within the mineralized area can help determine the effects of mining on the pH levels of the local streams.

<u>Data</u>

Finding data for the Colorado area was not a problem, as Colorado has several organizations that provide data at no cost. Combined with the USGS database and the National Uranium Resource Evaluation (NURE) databases, data was readily available.

The following sources were used for shapefile and data acquisition:

- <u>http://www.usgs.gov/</u> provided the shapefile for the NURE- hydrogeochemical and stream sediment reconnaissance (HSSR).
- <u>http://dtdapps.coloradodot.info/otis</u> is the location for Colorado Department of Transportation 's downloadable GIS data. I used this site for shapefiles of city locations and county boundaries, as well as the major highways in Colorado.
- www.Coloradoview.org is a collection of surveying and geospatial data in Colorado. This website provided : the aerial imagery and false color relief shapefile as well as the permitted mine location data
- <u>http://water.state.co.us</u> is the location for Colorado's Department of Water Services provided the Stream shapefile for all rivers in Colorado.

Many of the files did not include metadata. This was important, and a slight obstacle in the project. Because the data was taken from several sources, I was required to change the coordinate system in many of the feature classes to NAD83_UTM_Zone_13N. This was done by on-the-fly projection, though in some cases, I changed the projection in Arc Catalog.

I created a new shapefile outlining the Colorado Mineral Belt by Georeferencing a .jpeg file and tracing the polygon using the Editor feature. This allowed me to copy a spatially accurate, shaded region of interest onto my map.

<u>Method</u>

As we have learned over the course of the semester, I began my project with a blank map document in ArcMap. I made a folder connection to H:/Colorado Project where I kept my data for this project on my flash drive. At this point I loaded:

TI_2009_08_cousub.shp (County Boundaries) Co_ned90_rgb5x_whitebk.TIF (Shaded relief map) Nurewtr-fUS08.shp (NURE water data) Streams.shp Permittedmines.shp Cities.shp HIGHWAYS.shp

Figure 1 (Very messy map, so I hid some layers while working)

Feature To Point

The first thing to do in order to get the average pH value assigned to river segments was to turn the lines of the streams into individual points

STREAMS Sutput Feature Class Udsk.austin.utexas.edu/ah2759\$/My Documents/ArcG15/Default.gdb/STREAMS_FeatureToPoint Inaide (optional) The input features that can be multipoint, line, polygon, or annotation.	STREAMS Image: Class Output Peature Class The input features that ca \vdsk.austin.utexas.edu/ah2750\$\vdotyMy Documents\vdotyCGI5\Default.gdb\STREAMS_FeatureToPoint Image: Class Image: Inside (optional) Image: Class	Input Features		^	Input Features
Autput Feature Class The input features that can be multipoint, line, polygon, or annotation. Inaide (optional) Image: State of the input feature state of the input feat	Sutput Peature Class The input features that ca \\dsk.austin.utexas.edu/ah2759\$\/My Documents\/ArcGIS\/Default.gdb\/STREAMS_FeatureToPoint El Inside (optional) El	STREAMS	-	6	
\\dsk.austin.utexas.edu\alh2759\$\Wy Documents\ArcGIS\Default.gdb\STREAMS_FeatureToPoint De multipoint, line, polygon, or annotation. Inaide (optional) De multipoint, line, polygon, or annotation.	\\dsk.austin.utexas.edu\ah2759\$\My Documents\ArcGIS\Default.gdb\STREAMS_FeatureToPoint be multipoint, line, polyge Inside (optional)	Output Feature Class			The input features that can
Inside (optional)	Inside (optional)	\/disk.austin.utexas.edu/alh2759\$\/My Docume	nts/ArcGIS/Default.gdb/STREAMS_FeatureToPoint	8	be multipoint, line, polygon, or appolation
		m succe delegand			

I put the shapefile created by this process to the side while I modified the NURE-HSSR data in the next two steps.

Interpolation of Data

I used the Inverse Distance Weighing technique to rasterize the data points provided in the NURE shapefile. This method made sense for this project because the pH values in the streams were unlikely to be higher or lower than the recorded measurements.

Input point features				n Î	Search radius
nurewtr-fUS08			•		(optional)
Z value field				_	
PH Output contex					Defines which of the input
Uniput raster	method and a second all the	contra for its addition also	- •		interpolate the value for
(gisk.austin.utexas.edu.jan2/	sester noorments And	GIS (Deraurt, gdb (dw_sh)	p1		each cell in the output
Output cell size (optional)					raster.
0.0160304				2	
Power (optional)				_	There are two options:
				2	Variable and Fixed.
Search radius (optional)	_				Variable is the default.
Variable	<u> </u>				
Search Radius Settings					 Variable
Number of points:	12	-			
Number of points.					Uses a variable
Maximum distance:					search radius in
				+	specified number of
			1.0		,
	OK	Cancel En	vironments	ide Help	Tool Help

I set the field of interpolation to pH and made the output cell size very small. The fine resolution of my raster meant I would have the most accurate values of pH interpolated at distances from the streams.

Figure 4 (Ooh! Pretty colors, but they are not good for the water!)

Extract Value to Point

Next, the pH values needed to be extracted from the raster as points. This is where I used the stream points. This step was necessary in order to provide a fair average value for the discrete stream segments.

I set the point feature as our stream points, and our input raster as the pH raster from the interpolation.

Extracting from the raster yields the interpolated pH for the area, which I joined with the Stream shapefile in the next step. The new shapefile contained the average values with the Stream point locations.

Joining the Data

Now the raster value for the pH was contained in the stream points, I simply joined the two features by right clicking the Streams feature class and clicking Join.

rex	ample, symbolize the layer's features using this data.
⊻hat	do you want to join to this layer?
Join a	attributes from a table
1.	Qhoose the field in this layer that the join will be based on:
2.	Choose the table to join to this layer, or load the table from disk:
	🍄 Stream_PH_Pnt 🗾 🖻
	Show the attribute tables of layers in this list
3.	Choose the field in the table to base the join on:
	NOSIEKVALU.
2	loin Options
	Beep all records
	All records in the target table are shown in the resulting table. Unmatched records will contain null values for all fields being appended into the target table from the join table.
	C Keep only matching records
	If a record in the target table doesn't have a match in the join table, that record is removed from the resulting target table.
	Validate Join
Abo	ut Joining Data OK Cancel

I chose to join the Stream_PH_Pnt shapefile based on the extracted RASTERVALU value. This recombined the stream points with the stream lines, but created a new attribute for the lines called RASTERVALU which was later renamed pH.

er Prop	erties	2.40			- C			100	12		
General	Source Sele	ction Displ	ay Symbology	Fields	Definition Qu	iery La	bels	Joins & I	Relates	Time	HTML Popu
now:		Draw o	uantities usin	a color	to show valu	Jes.				mport	
Feature	:S	- Fielde		-		0-	onificati		_		J
Catego	nes	ricius	-			Cia	Mat	uni Daral		->	
Guantit	les	Value:	PH		▼		Natu	Iral breat	cs (Jenk	s)	
Grad	uated symbols	<u>N</u> omaliz	ation: none		-	Cla	ses:	5 🛨	Clas	ssify	
- Prop	ortional symbol	S Color Doo									
unants Multi-I-	Au.:	Color Ran	np.								_
MUITIPIE	<i>H</i> ATINDUTES	Symbol	Range			Label					
		-	0.00000 - 3.00	000		0 00000	- 3 000	000			
			3 00001 - 6 60	000		3 00000	- 6 600	000			
			6 60001 - 7 50	000		6 60001	- 7 500	000			
			7 50001 - 8 20	000		7 50001	- 8 200	000			
	57		8.20001 - 11.2	0000		8.20001	- 11.2(0000			
A.		Sho <u>w</u>	class ranges usir	ng feature	e values				Adva	nce <u>d</u> •	•
						(0	K	Са	ncel	Apply
			Figure	7 (5)	mbolo	JV)	7				

Once the new Join output was created, I changed the Symbology of the Streams to show a gradient by pH. I broke the colors into 4 classes to represent acidic, basic, and neutral waters.

Georeferencing and Creating a Shapefile

In order to only work with the Colorado Mineral Belt, I had to create a shapefile of the area. I downloaded a .jpeg and used the Georeferencing tool to match the image to my map's coordinate system.

Once it was properly referenced, I changed the display to 50% Transparent so I could see my map under the .jpeg. I created a shapefile in ArcCatalog and used the Editor feature to make its dimensions the same as the purple shaded zone in the .jpeg.

When the polygon was finished, I deleted the .jpeg and was left with the mineral belt boundary.

Next I used the Geoprocessing Menu at the top of the screen to clip the features that I wanted to measure. I only needed the streams and mines inside the Mineral Belt boundary I had created, and cities and highways for spatial reference.

Colorado_Map - ArcMap - Arc	Info						
≺ Clip	Just photos	population of the second	-	groups and	-		0 33
 Input Features 					Â	Clip	ń
Clip Features				-		Extracts input featu overlay the clip feat	ures that tures.
Output Feature Class						Use this tool to cut	outa
XY Tolerance (optional)			Meters		•	using one or more of features in another	of the feature
						class as a "cookie This is particularly for creating a new fi class—also referred study area or area in interest (AOI)—that contains a geograp subset of the featur another, larger featur class.	cutter". useful eature d to as of t hic res in ure *
	ОК	Cancel	Environments] < <h< th=""><th>ide Help</th><td>Tool Help</td><td></td></h<>	ide Help	Tool Help	
Figure 10 (ArcToolbox>	>Data Man	agemen	t Tools>	• Extrac	t> Clip)	

I used this tool to clip the streams and mines, with the clip feature set to CO_MinBelt.shp created previously.

Clipping the desired cities for the highways and cities was a little more complicated. Because I only wanted a few of the thousands of cities, I selected them from the Attribute tables of the CO_cities.shp. I used ActToolbox>Data Management Tools>Extract>Select to extract only the selected cities.

I did the same for the highways, only selecting IH 70 and IH 25.

<u>Clip</u>

Next, I went into the attribute table and selected only the mines producing metals, Gold, Iron, Lead, Molybdenum, Pyrite, Silver, and Tungsten, as well as Coal. I changed the symbology of each in order to identify them, and removed other mines from the map.

<u>Graph</u>

To clearly show the number of river segments with adverse pH values, I decided to create a graph from the attribute table of the streams. I created a histogram for this from the Attribute Table menu.

			,				100	- C - 2		-			enser "rate
1 ₹		LT Offin 3	5										
ream Pl	+								_		9 9		
FID	Shape *	Create	Graph Wiza	rd			10,001	Rep. org.			8 22	VAT_ID_1	NAME_1
399	Polyline ZM					[1	Homestake Creek
2961	Polyline ZM	Graph typ	e:				-		_			1	Quartz Creek
2866	Polyline ZM	Histo	gram		-		Gra	oh of Stream	n PH			1	Crystal Creek
1291	Polyline ZM	Lawer/Tak	-			420-						1	
2333	Polyline ZM					400-						1	Crystal Creek
1/32	Polyline ZM	🔊 Strea	m PH		_	380-				_		1	Foot Lime Crock
1203	Polyline ZM	Value field				340						1	South Arkanese Diver
2853	Polyline ZM	value neu		PE	•	320-						1	Crystal Creek
1037	Polyline ZM	X label fie	d;	<none></none>	-	300-					1	1	
2085	Polyline ZM					280-						1	
1294	Polyline ZM	Vertical as	as:	Left	•	260 -						1	
1290	Polyline ZM	Horizonta	axis:	Bottom	•	± 240						1	
3606	Polyline ZM					5 220-						1	South Clear Creek
2348	Polyline ZM	Add to	legend	Show labe	ls (marks)	8 200-						1	Crystal Creek
1292	Polyline ZM	Color:		Custom		180-					1	1	
2852	Polyline ZM					140			Γ	<u>ן</u>		1	
1901	Polyline ZM	Number o	fbins:	61 🖶		120						1	Lime Creek
2351	Polyline ZM	Transpare	ncy (%):	0 🚔		100-						1	North Line Courts
1203	Polyline ZM					80-							Lime Creek
1895	Polyline ZM	Show I	order			60-						1	Line Creek
2640	Polyline ZM	Show I	ines			40						1	East Fork Arkansas River
2660	Polyline ZM					20-			, hrs.			1	Fryingpan River
1934	Polyline ZM					0	12 574: 2 724)	14 842: 4 062		2004	10 206: 0 446	1	
1903	Polyline ZM					[0.628; 0.778)	[2.5/1; 2./21)	[4.613; 4.962 DLI	a) [/.(J55; 7.204)	[9.296; 9.446	1	West Lime Creek
3149	Polyline ZM	Histogra	m									1	Nast Tunnel
1530	Polyline ZM		1		Lond Translater 1							1	Columbia Creek
1546	Polyline ZM	Add			Load l'emplaté 🔻							1	
2698	Polyline ZM											1	Granite Creek
1771	Polyline ZM							< Back	Nex	:t >	Cancel	1	Coal Creek
1875	Polyline ZM	0400 1	2240.002				45	2240 005024	2400	2400 1	2240.000	1	Red Mountain Creek
1544	Polyline ZM	31994	2240.086	1			15	2240.085861	3199	31994	2240.086	1	
23/1	Polyline ZM	309/5	2103.972	1	North Fork Lake Crool		51	2105.9/102/	3097	30975	2105.972	1	North Fork Lake Crook
1874	Polyinie ZM Polyine ZM	34848	1502 754	1	North Fork Lake Creek		00	1502 754002	3484	34848	1201.790	1	NOTH FOR Lake Creek
566	Polyline ZM	15635	2804 794	1	Middle Cottonwood Cr	eek	15	2804 704580	1563	15635	2804 794	1	Middle Cottonwood Creek
1020	Dohdina 7M	35207	1456 244	1	made continwood ci		51	4456 2436	3520	35207	A456 244	1	middle Cottonwood Creek
•	1)	ы 🗐	🔲 (0 out	of 3816 Sele	ted)								
	 -												
eam P	H												

Figure 12 (The graph helps give readers an idea of just how many streams are not suitable)

In Layout view, I added the graph to the map, adjusted the labeling, and added the Explanation and scale.

Conclusion

The flexibility of ArcMap allowed me to easily analyze tons of spatial data over the region. I was able to combine data and relate files and objects in new ways. By joining the pH data to the streams and overlaying the mines in the region, I created a map that clearly presents the information necessary to address the problem of water quality due to mining in the Colorado Mineral Belt.

The final map shows that the mining of the rare metal minerals in the Colorado Mineral Belt has affected the pH of the streams in the area. The majority of streams in the area are basic, rather than acidic. It is unclear whether this issue stems from mining, or unrelated environmental issues. High concentrations of Gold mines in the southwest and northeast regions show acidification of the streams. In the central area, large numbers of Silver mines are also showing acidic stream water. The refinement process and waste from mining pollution clearly leads to acidic waters and should be examined further to prevent more environmental damage.

Mining and Stream Acidity in the Colorado Mineral Belt

Tungsten

Aaron Hantsche