(U-Th)/He Lab

Floor Plan

CLICK ON FLOOR PLAN FOR LARGER SIZE

UT (U-Th)/He Laboratory Picking and Grain Measurement Facilities
This facility is housed in a complete renovated laboratory space at the UT JSG. Mineral grains are handpicked and screened for inclusions using customized Nikon SMZ-U/100 stereomicroscopes with a rotating stages. The stereomicroscopes have both transmitted (polarized) and reflected light capabilities. Prior to loading samples into Pt sleeves, all grains are digitally photographed using a Nikon digital ColorView® camera and all digital pictures are archived. AnalySIS® imaging software is used to morphometrically measure each grain before loading into Pt tubes. These morphometric values are subsequently imported into a LabView routine to calculate the alpha-ejection correction. The (U-Th)/He picking and grain measurement facilities were funded through JSG start-up funds to Stockli and are also used for U-Pb (LA-ICP-MS and TIMS) and other geochronologic sample preparation.

Picking Scope

Automated He Extraction Line for (U-Th)/He Dating
The UT (U-Th)/He laboratory houses three state-of-the-art, all metal, ultra-high vacuum noble gas extraction and purification lines for measuring 4He. The quadrupole He mass spectrometry systems consist of the following principle components: 1) One Photonmachine 30W Diode Laser and two Photonmachine 75W Diode lasers and a U.S. Laser continuous-mode Nd-YAG lasers for total fusion He laser extraction, ideal for single-crystal work (see House et al., 2000), 2) two separate all-metal extraction lines equipped with computer-controlled pneumatic Nupro valves and pumped by a combination of ion, turbo and rough pumps, 3) precise volume aliquot systems for spiking sample gas with 3He for isotope dilution, 4) precise volume aliquot systems for delivering a 4He standard with separate depletion tank systems to monitor 4He tank depletion, 5) gas purification system consisting of two SAES NP10 getters and two Janis cryogenic trap capable of separating He from other gases by variable temperature release at 16-37K, and 6) two Blazers Prisma QMS-200 quadrupole mass spectrometer for measuring 3He/4He ratios. Our helium isotope dilution procedure allows very low-blank (< 1 femtomole) and high-precision (<1-2%) measurements of 4He in dated crystals while allowing for recovery of the crystals for U and Th measurement in the same aliquot (see sections 5 and 6).

Picking ScopePicking Scope

The UT extraction line components and valves are fully interfaced with a central computer and are fully automated using LabView software. The 3He spiking, cryogenic trap temperature cycling, and mass spectrometric analysis of samples, gas standards, and blanks are fully computer controlled. On extraction line #1, the laser heating of samples is controlled through a feedback loop using a video capture card allowing for continuous computerized adjustment of the laser output power for even heating. The laser sample planchet sits on a computer-controlled Newport X-Y stage and holds up to 44 samples. On laser extraction line #2, diode laser heating is controlled by an in-line two-color pyrometer. The 44 position planchet is fixed while the x-y-z position of the laser beam deliver is computer controlled.

Automated He Extraction Line for Diffusion Experiments

The UT (U-Th)/He laboratory also houses a third state-of-the-art, all metal, ultra-high vacuum noble gas extraction and purification line for measuring 4He dedicated to He diffusion experimental work and step-heating He extraction, but also has the potential for in-vacuum dissolution (acid digestion) degassing. The second quadrupole He mass spectrometry system consists of the following principle components: 1) four automated He diffusion experiment apparatuses (see details below), 2) an all-metal extraction line equipped with computer-controlled pneumatic Nupro valves and pumped by a combination of ion, turbo and rough pumps, 3) a precise volume aliquot system for spiking sample gas with 3He for isotope dilution, 4) a precise volume aliquot system for delivering a 4He standard with a separate system to monitor 4He tank depletion, 5) a gas purification system consisting of two SAES NP10 getters and a Janis cryogenic trap capable of separating He from other gases by variable temperature release at 16-37K, and 6) a Blazers Prisma QMS-200 quadrupole mass spectrometer for measuring 3He/4He ratios. Our helium isotope dilution procedure allows very low-blank (< 1 femtomole) and high-precision (<1-2%) measurements of 4He in analyzed crystals.

halogen200

He Diffusion Experimental Line
As discussed above, it is essential to accurately quantify the helium diffusion characteristics of mineral phases in order to use them for thermochronological purposes. Diffusion properties such as activation energy and diffusivities (Do/a2) can be constrained by measuring fractional helium release in controlled step-heating experiments, which have traditionally been carried out using resistance furnaces. The UT (U-Th)/He laboratory is equipped with four specially designed diffusion cells to perform detailed in-vacuo step-heating experiments (Farley et al., 1999). Inside the diffusion cell the Cu-foil wrapped sample is suspended by a K or J-type thermocouple and is heated by a 120V halogen bulb projected through a sapphire window. Precise temperature control is accomplished through a feedback mechanism involving a Watlow thermal controller and a phase-angle-fired Eurotherm power supply. Estimated temperature stability during each step is better than ±1°C. The Watlow thermal controllers are interfaced with the lab computer, allowing the helium diffusion experiments to be executed in a fully automated mode using LabView software.

Most of our experimental efforts to date have concentrated on investigating the diffusion characteristics of a variety of new mineral phases, such as monazite, rutile, magnetite, fluorite, perovskite, or garnet. Extensive work on monazite has demonstrated a closure temperature of between 190 and 250°C (assuming a cooling rate of 10°C/m.y.) that is significantly dependent on composition and slightly dependent on grain size. The Arrhenius plot in Figure 3b shows an example of a monazite diffusion experiment using multiple heating cycles between 400 and 650°C.

Although the (U-Th)/He dating technique is calibrated against first principles and does not require standardization, it is invaluable to have mineral standards to monitor procedural performance and to use as benchmarks by which to judge the quality of results and for inter-laboratory comparison.

The UT (U-Th)/He laboratory regularly analyzes a variety of recognized, inter-laboratory, and intra-laboratory standards, such as Durango apatite (~31.5 Ma; Young et al., 1969; McDowell and Keizer, 1977, Farley, 2000), Fish Canyon Tuff apatite and titanite (~27.9 Ma; see summary in Villeneuve et al., 2000), and 97MR22, a well-characterized plutonic sample from British Columbia (4.5 Ma; Farley et al., 2001). Our measured ages for these age standards are in excellent agreement with published values, giving us confidence in the quality of our data and the performance of our multi-step laboratory procedures.

Over the years the active (U-Th)/He laboratories have used a series of quickly-cooled standards that fall into three categories, (1) regular age standards dated by other analytical techniques, such as 40Ar/39Ar dating (e.g., Fish Canyon Tuff), (2) semi-formal standards used by the leading (U-Th)/He laboratories as inter-laboratory standards (e.g., 97MR22 distributed by Caltech), and (3) intra-laboratory standards that have been independently dated and/or have proven to yield extremely well-behaved and reproducible age data. All three types of standards are in use at the UT (U-Th)/He laboratory.

Co-analyzed standard data will be included in both the analytical report as well as the electronic database (see below). The summary table below documents all commonly used age standards dated in our laboratory over the past three years, listing mean (U-Th)/He age (2-s), number of analyses (n), the relative standard deviation of the population, and the accepted 40Ar/39Ar age. For monazite, rutile, and magnetite only informally developed by Stockli’s group/laboratory, but independently dated intra-laboratory standards exist.

Summary Table of (U-Th)/He age standards most commonly analyzed at the KU/UT (U-Th)/He laboratory to monitor procedural integrity and age reliability (see text). n denotes the number of aliquot analyses carried out at KU/UT (U-Th)/He laboratory during the past 3 years.

 

Summary of UT (U-Th)/He age standards

 

Standard (Mineral) Rock type (U-Th)/He age [Ma] n RSD% 40Ar/39Ar age [Ma]
Durango (apatite) Rhyolite 31.9 ± 0.5 161 3.5 31.5
97MR22 (apatite) Tonalite 4.4 ± 0.1 225 6.5 4.5*
Silver Peak Tuff (apatite) Rhyolite 6.4 ± 0.2 45 8.7 6.5
Proprietary
Fish Canyon Tuff (zircon) Rhyolite 27.8 ± 0.8 162 7.5 28.2
Silver Peak Tuff (zircon) Rhyolite 6.4 ± 0.3 39 8.7 6.5
Taylor Creek (zircon) Rhyolite 28.8 ± 0.8 26 8.8 28.3
Wall Mountain Tuff (zircon) Rhyolite 36.2 ± 1.1 38 7.8 36.8
Proprietary
Fish Canyon Tuff (titanite) Rhyolite 28.7 ± 1.2 53 2.2 28.2
Silver Peak Tuff (titanite) Rhyolite 6.5 ± 0.4 29 4.3 6.5
Proprietary
Macusani (monazite) Rhyolite 24.2 ± 0.4 11 5.2 24.2
Proprietary
Sulliavan Buttes (rutile) Xenolith (latite) 23.1 ± 1.4 35 5.7 24.4
Sweet Grass (rutile) Xenolith (latite) 48.1 ± 3.9 13 8.7 50-54
Proprietary

*reference age is published (U-Th)/He age; sample used by several laboratories as intra- and inter-laboratory age standard.

Duango Apatite Age Standard (2004)

Duango Apatite Age Standard (2004)

 

Helix SFT Noble Gas Mass-Spec and Extraction Line for 4He/3He Analysis
In 2012, the UT (U-Th)/He laboratory added a Thermo Helix SFT magnetic sector mass-spectrometer with dedicated UHV extraction and purification line. The line will be equipped with a diode laser for laser heating, two light-bulb furnaces for low-temperature step heating, and a PhotonMachine Analyte G.2 Excimer Laser Ablation system for laser-ablation He dating development. The Analyte G.2 will be share with one of the Thermo Element2 HR-ICP-MS instrument. Addition of this state-of-the-art instrumentation will allow the UT (U-Th)/He laboratory to engage in 4He/3He thermochronometry, analyze very young low He-yield volcanic samples and other low radiogenic samples (e.g., young magnetite), and also enter the world of He laser ablation measurements.

 

Pictures of June 2012 Installation!!!!!

 

Picking ScopePicking Scope