250 Ma

Technology in the Geoscience Classroom

(writ large: Classroom, Lab, and Field)

Steve Whitmeyer (James Madison University)

...with input and help from Declan De Paor, Mladen Dordevic, Callan Bentley, Chris Atchison, and many others!

Google earth

Data SIO, NOAA, U.S. Navy, NGA, GEB Image Landsat Image U.S. Geological Survey Imaga PGC/NASA

Things to ponder:

- 1. Technology developers assume that their creations enhance student learning
- 2. Educators want evidence that the technology is improving student learning
- 3. Students' have their own expectations
- 4. The broader reach of technology-facilitated education

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat Image U.S. Geological Survey

Levels of technology in education:

1. Passive observation – "eye candy"

2. Student-driven investigation facilitated by technology

3. Real-time "instantaneous" feedback integrated with student-driven investigation

... with examples from the classroom, lab, and field

Data SIO, NOAA, U.S. Navy, NGA, GEE Image Landsat Image U.S. Geological Survey

Built with MaRGEE tool: http://geode.net/margee/ (Dordevic & Whitmeyer, 2015)

Tectonic model Rifting of Gondwa

GE JAMES MADISON 🚯 🔍 🔍 🕔 12/ 0 151 BCE Controls Toggle Blue Background Visibility Toggle Grid Visibility Toggle Present-day Plate Boundaries Continents Select the continents that you want to view Select All Select None Africa Antarctica North America South America **Other Features** Select other features that Virginia Hot Spot Volcanos Mountain Belts APW naths Animations Use time slider control at upper left of main window, or chose an animation to run North Atlantic Equatorial Atlantic Indian Ocean Southern Ocean Centered on Africa Centered on Eastern North America

Centered on India

References

Pangaea Breakup

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat Image IBCAO Image U.S. Ceological Survey The classic Atlantic mountain belts correlation question...

Dark

0 Ma

Pangaea breakup: GEODE.net/Pangaea

http://csmres.jmu.edu/Geollab/Whitmeyer/web/visuals/GoogleEarth/VAquakes.mov

Fault plane model from 2011 Virginia Earthquake aftershock data

Inquiry-driven models

vertical view

http://www.iris.edu/ieb

http://app.visiblegeology.com/

Inquiry-based, student-driven exploration of 3D models

Inquiry-based, student-driven exploration of 3D models

Google Earth for Onsite and Distance Educatio

Exercises with real-time feedback

Google Earth for Onsite and Distance Education www.geode.net

Exercises with real-time feedback

EarthQuiz ► Play

Score: 111 Part I

The vertical columns on this landform are an example of which geologic process?

Glacial scouring

ODepositional layering

Preshly crystallized igneous rock cooling and contracting

Compressional folding

Part II

Now guess the location of the feature by clicking on the map below or drapping the marker

Share | Feedback

Question courtesy of: Steven Whitmeye

EarthQuiz: More than 500 sites / questions

Fold Analysis Challenge

www.geode.net/fac

Axial plane

Sheep Mountain Anticline

Google Earth Plug-in or Stand-alone GE application Technology in the Geoscience Classroom Things to ponder:

- 1. Technology developers assume that their creations enhance student learning
- 2. Educators want evidence that the technology is improving student learning
- 3. Students' have their own expectations

Students expect technology-facilitated, inquiry-based learning. Instructors need to assess its effectiveness.

Technology in the Field

Technology in the Field

Digital mapping & data collection in the field

Mapping geology with an iPad, iGIS, and ArcGIS

Field Data

Simple GIS shapefile data table for outcrop data collection in iGIS

The iGIS app showing point data over high resolution orthophotos

1:14 PM

\$ 58% Done

ATA COMMENT

Crowdsourcing Field Data Collection

Outcrop data collected by 14 student teams during 4 day digital mapping project at JMU Ireland Field Course in 2014

Crowdsourcing Field Data Collection

6 years of data from the digital mapping project

Crowdsourcing Field Data Collection

6 years of data from the digital mapping project

	1	2	3	4	5	Mean
My prior experience with ArcGIS was:	Nonexistent	Very little	Moderate	Considerable	Extensive	2.15
My prior <u>feelings</u> specific to this exercise were	Great discomfort	Slightly apprehensive	Neutral	At-ease and comfortable	Highly motivated	2.97
My prior <u>skill level</u> with this exercise was	Completely unskilled	Basic	Competent	Skilled	Expert	2.34
My <u>knowledge</u> gains from this exercise were	Nonexistent	Very little	Moderate	Considerable	Extensive	3.77
My <u>feelings</u> after this exercise were	Great discomfort	Slightly apprehensive	Neutral	At-ease and comfortable	Highly motivated	3.66
I found this exercise to be:	Not valuable at all	Only slightly valuable	Moderately valuable	Useful	Essential	4.18
My <u>skill level</u> after this exercise was	Completely unskilled	Basic	Competent	Skilled	Highly skilled	3.49
My overall learning from this exercise was	Nonexistent	Trivial	Moderate	Considerable	Extensive	3.77

Assessment data for six years of digital mapping exercises; mean of responses, n=167. Significant gains were recorded in Feelings, Skill Level, and Knowledge. Assessment template from Pyle (2009).

(Whitmeyer & De Paor, 2014)

Technology-Enhanced Field Access

Smart glasses can pair wheelchair students with agile students at the outcrop

MiKayla Briere

Real-time video conferencing in the field – Facilitating field access for SWD

Technology-Enhanced Field Access GEOPATH: Inclusive Field-Based Geoscience Undergraduate Research Opportunities for All

The program will feature a cohort of six teams over two years conducting field research in Arizona and Ireland.

Learn more and apply to participate at: www.theiagd.org/geopath

This project is funded by the National Science Foundation (Award 1540652)

