Skills and concepts-driven revision of the Texas A&M B.S. Geology and B.S. Geophysics degrees

David Sparks, Julie Newman, TAMU Geology and Geophysics Curriculum Study Group

Debra Fowler, Carolyn Sandoval, TAMU Center for Teaching Excellence
Overview of TAMU Geology and Geophysics Dept.

30 tenure/tenure-track faculty
(8 newly added over last 3 years)

large recent increases in undergrad majors
(currently ~550)

~100 graduate students
Service teaching : 900-1200 students/sem.

Last revision of curriculum: 1998
Formed the **Curriculum Study Group** (G&G faculty and CTE curriculum experts, students, academic advisor)

- Gathered Data... *Summer/Fall 2014*
- Identified Ideal Student, Program Learning outcomes
 And wrote rubrics for outcomes *Spring 2015*

Discipline-specific working groups *Summer/Fall 2015*

- Designed plan for courses using the developed rubrics

Entire Faculty

- Settled on plan of courses *Fall 2015*
- Create Curriculum Map *In progress*
- Design/Redesign courses *Spring 2016*
- Develop assessment plan/instruments
Former Student Survey

How prepared do students feel?

Most used
- Oral communication
- Problem solving
- Working in teams
- Learning and using computer software
- Written communication
- Analyzing data
- Maps, cross-sections, and stratigraphic columns
- Using scientific literature
- Quantitative skills (math, statistics)
- Field observations and data collection
- Identifying and classifying rocks and minerals
- Lab work

Least used
- Computer programming
Geoscience Learning Outcomes

1. **Earth Materials:** Evaluate relationships between Earth materials and Earth system processes
2. **Earth Dynamics:** Infer the state and evolution of the global Earth system from fundamental physical/chemical/biological processes
3. **Space & Time:** Recognize the variability and interdependence of Earth’s systems through time and space, from the micro- to macro-scale
4. **Modeling and Manipulating Data:** Analyze data and develop models to understand geological systems
5. **Earth System Processes:** Interpret Earth’s surface based on interaction between the atmosphere, biosphere, hydrosphere and geosphere.

Texas A&M Undergraduate Learning Outcomes (Professional Skills)

6. **Demonstrate Critical Thinking**
7. **Effectively communicate**
8. **Practice Personal & Social Responsibility**
9. **Demonstrate social, cultural and global competence**
10. **Prepare to engage in Lifelong Learning**
11. **Work collaboratively**
<table>
<thead>
<tr>
<th>Indicator</th>
<th>Novice</th>
<th>Developing</th>
<th>Proficient</th>
<th>Exemplary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Heat Budget</td>
<td>Define pressure, temperature, and describe their variation within the Earth</td>
<td>Describe how changes in pressure and temperature affect the state and rheology of Earth materials</td>
<td>Identify the sources of heat in the deep Earth and the mechanisms of heat transfer</td>
<td>Quantify the balance of heat sources and transfer mechanisms and relate to global cooling rates and region tectonic processes</td>
</tr>
<tr>
<td>Physical Geology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Geology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Geophysics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Geophysics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Communication</td>
<td>Define types of graphs and variables; identify structures and processes displayed in drawings of the Earth</td>
<td>Construct graphs to display data, and reproduce drawings that display Earth structure and dynamic</td>
<td>Infer relationships from visualized data. Connect graphical relationships with geological concepts.</td>
<td>Combine text, visualizations and quantitative arguments to communicate interpretations of geologic processes</td>
</tr>
<tr>
<td>Physical Geology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geol. Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Geology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geol. Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lessons Learned (so far)

Get the right mix of people involved from the start

Keep touching base with reality/constraints

Bring (almost) everyone along