Some Reflections on Curriculum Design and Program Assessment:

David Mogk Dept. Earth Sciences

January 8, 2016 2016 Heads/Chairs on the Future of Undergraduate Geoscience Education Summit

http://serc.carleton.edu/107251

We do a pretty good job presenting scientific content to students:

Taxonomies

- Methods
- Problem sets and worked examples....

But, are we doing a good job producing good Scientists?

What are the attributes required of being a good geoscientist?

- Where in your curriculum professional development as a scientist explicitly addressed?
- What other extracurricular training is needed?
- Who has responsibility?

Whole Student Approach

- Define programmatic student learning goals
- Embed assessments throughout the program to demonstrate mastery
- Align course sequences to reinforce and anticipate essential concepts and skills
- Prepare students to be life-long learners
- Assign responsibilities to ensure these goals have been met.

The Product Students who can

- Understand geologic context, apply concepts and skills
- Sk the next question
- Know where to look for information
- Formulate a plan to address the problem
- Become critical producers and consumers of data
- Integrate multiple lines of evidence
- Communicate results;
 - write a report, make a map, develop a GIS....
- Be life-long learners

"Backward Design"

What is the profile of the student leaving your department?

What should they know, be able to do?

Preparation for the workforce

- Traditional "geo" employment or grad school: exploration, environmental, regulatory agencies....
- Non-traditional: policy planning, environmental law, K-12 teaching, business (e.g. insurance....)

If it ain't broke don't fix it"

- But it was broke
- Need for more efficient utilization of faculty, TAs, course credits and resources;
- Some courses needed, some courses terminated or merged.

Learning Sequences

Based on Bloom's Taxonomy

- Observation of Earth (remembering)
- Description of Earth materials and land forms (understanding)
- Interpretation of Earth processes (application)
- Integration of multiple lines of evidence to address geologic (and societal) problems of consequence (analysis, synthesis, evaluation)
- Base curricular decisions on sound Discipline-Based Education Research!
 See: http://serc.carleton.edu/NAGTWorkshops/DBER.html

Rule of 3's (or 4's)

If something is worth learning, students need multiple exposures and opportunities

Exposure
Familiarization
Competency
Mastery

Photo Credit: Jeff Ryan

ALIGNMENT

- Review course sequences
- Scaffolded and articulated?
- Can students see a clear path towards graduation?

(Required Courses ONLY O	ffered in the Dept. of E	arth Sciences, exlusive	of Independent Study	y, Thesis, etc.)				
	Earth History, Deep Time,	Earth Composition and Architecture	Surficial Processes,					
Unifyiing Themes	Paleontology Option	Geology Option	Water, Climate Hydrology, Snow Options	Human Dimension Geography Options, Including GIS Minor				
	T dicontology option		Options	including 015 Millor				
Upper Division Electives (4xx)		GEO 429 Field Geology		GPHY 425 Geog Thought				
Capstone Courses			GPHT 425 Geog Thought					
Major "Enrichment" Courses (4XX)	GEO 417 Taphonomy	GEO 433 Tectonics	Other electives from	GPHY 431 Historical Geog				
Cognitive Skill Level: Analysis and Synthesis	GEO 411 Vert Paleo	GEO 440 Volcanology	LRES, CE, Poli Sci	GPHY 461 Tourism Plan				
Mastery of content and concepts	GEO 413 Macroevol	GEO 408 Meta Pet		GPHY 441R Mountain Geo				
	GEO 419 Field Paleo	GEO 406 Igneous Pet.		GPHY 445 Regional Geog				
		GEO 480 Petroleum	1	GPHY 480 Water and Soc.				
	a announcemp	GEO 480 Geophysics		GPHY 480: American West				
	GEO 407 Sedim	GPHY 446 East Asia						
		GPHY 411 Biogeography						
		mics						
				GPHY 426 Remote Sensing				
ad a catalon or the a A		en aleman de la companya de la		GPHY484 Applied GIS				
Major "Core" Courses by Option (3xx)	GEO 310 Invert Paleo	GEO 302R Mineralogy		GPHY 321 Urban Geog				
Cognitive Skill Level: Interpretation (process,	GEO 330 Paleo Lab			Careford Contractor				
history)	Technique	GEO 309 Sed and Strat		GPHY 322 Economic Geog				
	GEO 316 Comp Vert							
Competence with content and concepts	Anatomy	GEO 315 Structural Geol		GPHY 325 Cultural Geog				
	GEO 312 Dinosaur Paleo			GPHY 357 Fund App Map				
		GPHY 365 Geog Planning						
	GPHY 384 Advanced GIS							
	ERTH 303 Weather and Climate							
		ERTH 307 Ge	omorphology					
"Foundations" Courses (2xx) Concepts/Skills required of ALL E Sci Majors AND Allied Depts.	All Majors are expec Chemistry 141, Chem Math 171 Calc I, Ma	Stat 216, 217;						
Cognitive Skill Level: Description		EO 211 Historical Geology GEO 205 Earth Materials		1 year foreign Language				
Familiarization with content and concepts								
		GPHY 284 Intro to GIS						
				GPHY 121D Human				
Introductory Courses (1xx)	COTU	101 IN Earth System Scier	100					
Cognitive Skill Level: Observation, inquiry,	CKIH	ice .	Geography GPHY 141D Geog of World					
discoverv	ERTH	Regions						
Initial Exposure to content and concepts	GEO	negions						
initial exposure to content and concepts	GEU .	F						
	GEO 111 IN Dinosaurs	GEO 140 IN Planetary Geology	GEO 105 IN Oceanography					
	OLO III IN DINOSOUIS	ERTH 212R Yellowstone	occanography					
	the second se	Entre Land renowscome						

EARTH EDUCATORS' RENDEZVOUS

Rendezvous 2015 > Program > Mini Workshops > Creating the Graduates you Want

Rendezvous 2015 Creating the Graduates you Want

http://serc.carleton.edu/earth_rendezvous/2015/mini_workshops/mw10/index.html

The "Matrix Approach"

Defining and assigning student learning outcomes

Recurring Themes

History and Evolution of the Earth System

- Biological and tectonic evolution
- Historical Geology, Vert and Invert Paleo, Tectonics
- Composition and Architecture of Earth
 Earth Materials, Mineralogy, Petrology, Sed/Strat, Structural Geology
- Surface of Earth and the "Critical Zone"
 - Weather and Climate, Geomorphology, Hydrology

Human Dimensions

- Human, Regional, Resource, Economic Geography
- GIS and planning
- Hazards and Earth Resources; units in numerous courses

Geoscience Habits of Mind

- Earth System: heterogeneous, dynamic, complex, open system;
- Incomplete geologic record;
- Processes not directly observable on human scales (temporal or spatial)
- Ambiguity, uncertainty, inference.

Students need practice early and often!

Provide Students Opportunities to DO Science Research Opportunities Intro course (PCAST) Embedded in courses Independent study projects **REU** sites

Undergraduate Research as Teaching Practice

http://serc.carleton.edu/NAGTWorkshops/undergraduate_research/index.html

Cutting Ed.

Quantitative Skills

- Take as much math as can be fit into degree program!
- Calc I and II
- Statistics
- Linear Algebra, Diff Eq

The Math You Need, When You Need It math tutorials for students in introductory geoscience

The Math You Need, When You Need It

Math You Need	The Math You Need, When You Need It
Calculating Density	The Math You Need, When You Need It Math tutorials for students in introductory geosciences
Graphing	by Dr. Jennifer M. Wenner, UW Oshkosh Geology Department and Dr. Eric M. Baer, Highline Community College Geology Program
Hypsometric	

http://serc.carleton.edu/mathyouneed/index.html

Collaborative, Interpersonal Skills

- 🏵 Trust
- Respect
- Responsibility
- Willingness to share ideas
- Common sense of purpose
- B Equal \neq Equitable

Develop Extracurricular Departmental Activities—The "Co-Curriculum"

- Social events
- Sournal clubs
- Department seminars and colloquia
- Field trips
- Internships

Expectations for the Workforce

- Quantitative skills
- Sommunication skills (verbal, written, graphical)
- Collaborative work (interpersonal skills
- Systems thinking
 - Integration of multiple lines of evidence
- Problem-solving
- Research and research-like experiences,
 - Acquisition and use of data, modeling
- Applications to societal issues

See AGI Workforce Reports: <u>http://www.americangeosciences.org/workforce</u> 2015 Geoscience Employers Workshop <u>http://www.jsg.utexas.edu/events/files/Employers_Workshop_outcomes.pdf</u>

Workforce Expectations— Personal Traits

- Critical-thinking
- Problem-solving
- Curiosity
- Persistence
- Resilience
- Initiative
- æ

Ethics and Values

- Ethics and Self
- Ethics and Profession
- Sethics and Society
- Ethics and Stewardship of Earth

Teaching GeoEthics Across the Geoscience Curriculum

Search the Site

eaching GeoEthics Across the Geoscience Curriculum

http://serc.carleton.edu/geoethics/index.html

Essential Steps

- Align with institutional Mission Statement and Departmental Role and Scope Documents
- Know your students.
- **Solution** Ideal Student" who graduates from your dept.
- Address new realities
 - Changing nature of Geoscience, Workforce, Emerging Research....
- Identify essential: Concepts, knowledge, geo-skills, professional skills, "Habits of Mind", experiences, values....
- Create your matrix: Skills/content v. course sequence
 Faculty input...

Student Learning Outcomes and Program Assessment—the Matrix Approach

Curricular Claims:

- Earth System Approach
- Multiple exposures to key concepts
- Reinforcement of skills
- Workforce expectations
 - GIS
 - Communication
 - Problem-solving
- "Habits of Mind"
- Articulation of curriculum
- Formative assessment
 - Changes in emphasis
 - "Gap" analysis

Earth Science Habits of Mind						Professional Skills									
USING	DATA	REASONING			COMMUNICATION			QUANTITATIVE			RESEARCH	INTER PERSONAL	INFORMATION		
Students Collect Data	Students Utilize Existing Data	System Thinking	Temporal Reasoning	Spatial Reasoning	Problem- Solving	Oral Presentation Debate Discussion	Writing	Poster Session, Graphical Data Represen tation	Geometry Trigonom	Calculus	Statistics	Formulate Hypothesis Design Tests Report Results	Cooperative Collaborative Learning	Primary Literature, Databases; Critical evaluation	Theory, Philosophy and Intellectual History
1	2	3	2	3	2		3					2			
		3	1	1		1	2	1					2	1	1
				1			1								1
3	2	3	2	3	1		2	1			1				1
	3	1	1	2	2		2	2	2		2				
	3	2	2	2	3		2		2	2	1	з	2	1	
з	3	1	3	3	2	2	2	3	2	1	1	3	3	2	
	3	2	2	3	3		3	3	2	-	2			2	
	3	3	2	3	3		3	3	2		2	2		2	

These are competencies or skills that are not "owned" by any one course, yet are essential for student pre-professional training.

The matrix approach identifies where these are addressed in course work, to what extent, how, and by whom– an important formative assessment for departments!

Support Claims Made About Your Department

- The department contributes to the institutional mission.
- The department is uses an Earth System approach
- The department has an integrated curriculum that is designed with learning sequences that develop higher order thinking skills?
- The department provides authentic research experiences.
- The department prepares students who are prepared a) to go to graduate school, or b) enter the workforce.
- The department serves society by addressing the "grand challenges" of living on Earth..

Building Strong Departments

Developing Pathways for Strong Programs for the Future

NAGT

Defining Strong Departments

Characteristics of Strong Departments

Criteria for Success

Insights from Across Disciplines

Professional Preparation

Build a Network of Alumni and Employers

Internships

Integrating Professional Preparation into Programs

Department Heads and Chairs

Strategic Planning Recruiting and Retaining Faculty Managing a Department

Broadening the Diversity of your Graduates Resources from InTeGrate »

Degree Programs

Envision your Department What Makes a strong Program? Design Degree Programs Program Assessment Action Planning Profiles and Planning Documents Collection This material originally developed for Building Strong Geoscience Departments

Making a Case for Your Department

Becoming a Valued Member of your Institution

Strategies for Making your Case

http://serc.carleton.edu/departments/index.html

Resources

- EER Workshop on Creating "The Matrix" <u>http://serc.carleton.edu/earth_rendezvous/2015/mini_workshops/mw10/index.html</u>
- A Curriculum by Design (blog on coure alignment in curriculum) <u>http://serc.carleton.edu/earthandmind/posts/curriculum_desi.h</u> <u>tml</u>
- A Curriculum by Design 2 (blog on matrix development)<u>http://serc.carleton.edu/earthandmind/posts/curri</u> <u>culum_desi2.html</u>
- Building Strong Departments <u>http://serc.carleton.edu/departments/index.html</u>

ADDITIONAL SLIDES

Building Strong Departments

Developing Pathways for Strong Programs for the Future

uilding Strong Departments > Making a Case for Your Department > Becoming a Valued Member of Your Institution

Building Strong Departments

Defining Strong Departments

Department Heads and Chairs

Degree Programs

Making a Case for Your Department

> Becoming a Valued Member of Your Institution

Becoming a Valued Member of Your Institution

Administrators value departments they perceive as making positive contributions to the institution. There are two steps to becoming valued: making positive contributions, and making sure that your administration knows what you're doing.

Jump down to <u>Build Bridges Within Your Community</u> | <u>Carry Your Weight</u> | <u>Be Visible</u> | References

Building Strong Departments

Developing Pathways for Strong Programs for the Future

Building Strong Departments > Making a Case for Your Department > Strategies for Making Your Case

Building Strong Departments

Defining Strong Departments

Department Heads and Chairs

Degree Programs

Making a Case for Your Department

Becoming a Valued Member of Your Institution

Strategies for Making Your Case

Strategies for Making Your Case

The best time to make a case for your department is all the time, so that your administration never questions your value to the institution. Here are some strategies for making your case, early and often.

Develop a Unifying Vision and Goals for Your Department

Jump down to Do a Good Job With Program Reviews | Arm Yourself With Data | Be Ready to Justify Your Existence | Know Your Supporters | References

Within Your Community | Carry Your Weight | Be Visible |

Go

Search the Site

Search the Site

Go

We Know "What Works"

Recruitment and retention

- Communities of scholars; faculty and peer mentoring; engagement
- How people learn
 - Discipline-Based Education Research
 - Human Cognition, affective domain, metacognition
- Course and curriculum design
 - Student-centered; active learning;
 - High Impact Practices
 - Alignment of learning goals, activities, assessments

We Must Change the Culture

- We don't tolerate poor scholarship in research
 Why not insist on excellence in education?
- Faculty professional development
 Staying current in Science and Pedagogy/Practice
- Value Scholarship of Teaching and Learning
 Creation of validated instructional activities is a major scholarly contribution.
- Awards, Rewards, Recognition
 It's "Us" that set standards, serve on P/T committees