Teaching & Learning with Geoscience Data

Kim Kastens

Work done at Education Development Center & Lamont-Doherty Earth Observatory of Columbia University

Presented at: Summit on Undergraduate Geoscience Education 8 January 2015, Austin, TX

Reason #1: Students can grasp the evidence base that underlies the big ideas of science, rather than having to take these ideas on authority.

Reason #2: The world faces tough decisions and society is making some bad decisions. We want to raise up a generation who have the skills and disposition to make decisions based on evidence.

Reason #3: Those of our undergraduates who become scientists will need this skill set in their careers.

Most pre-college data experiences have been with small, student-collected data sets

Science Content Standards

What is involved in this transition?

Student-collected data

Day in the Life of the Hudson

Professionally-collected data

Kim aboard Joides Resolution, Leg 107

Embodied, experiential grasp of the natural setting and data collection methods

(from School in the Forest powerpoint, http://www.blackrockforest.org/docs/about-the-forest/schoolintheforest/)

(from Using a Digital Library to Enhance Earth Science Education, Rajul Pandya, Holly Devaul, and Mary Marlino)

Dozens of data points

Megabytes

Simple, transparent tools and techniques

Sophisticated tools & techniques

http://www.esri.com/library/ebooks/climate-change.pdf

Interpret one data set at a time

Multiple data sets with interactions; varying data types

Looking up values

Seeing and interpreting patterns

Common sense lines of reasoning

Position

of Shadow

Shadow

Length

Time

Position

of Sun

- Student-collected data
- Embodied, experiential sense of circumstances
- Dozens to hundreds of data points
- Simple, transparent tools & techniques
- Interpret one data set at a time
- "Common sense" lines of reasoning
- Single step causal chains

- Professionally-collected data
- Sense of circumstances from metadata
- Megabytes
- Complex tools & techniques; black boxes
- Multiple data sets and their interactions
- Temporal, spatial, quantitative and other lines of reasoning
- Multi-step lines of reasoning

Four ways to scaffold students' transition from small, studentcollected datasets to large, professionally-collected data bases

- (1) Use pre-selected snippets of high insight:effort ratio data ("Data Puzzles").
- (2) Nest a small student-collected data within a larger dataset.
- (3) Ask students to commit to a prediction of what they will see before they start making data visualizations.(4) Provide an array of candidate hypotheses.

Oceans of Data Institute Instructional Sequence Template #1

High insight: effort ratio data snippet

Procedure:

- 1) Curriculum developer identifies a small snippet of authentic data that embodies an important and widely-taught scientific concept, and develops data visualization(s) that foreground the patterns or relationships emerging from that concept.
- 2) Students view data visualizations on screen or paper, and answer guiding questions about the system represented by the data (not just about how to decode the data).
- 3) Students experience a rewarding "Aha! moment" of recognition when they see the process they have previously studied conceptually manifest in real world data.

From: Krumhansl, R., 2014, EDC Earth Science, Ronkonkoma, NY: Lab-Aids

Decoding question: "What regions of the ocean had the warmest temperatures during April?"

(from Krumhansl, 2014, EDC Earth Science.)

Oceans of Data Institute Instructional Sequence Template #2

SSwithinLP

(Small, student-collected dataset within large, professionally collected dataset)

Procedure:

- 1) Students collect and interpret a local data set.
- (optional) Students from multiple schools combine similar datasets to aggregate a larger sample or span a larger area.
- 3) Students interpret larger professionally collected dataset(s) which encompass and expand beyond the circumstances of their self-collected dataset.

A Day in the Life of the Hudson: http://www.ldeo.columbia.edu/edu/k12/snapshotday/

Combine with other school groups' data to explore variation across space.

Combine with professionally collected data to explore changes through time.

(from Turrin, M., & Kastens, K. A. (2010). In *Earth Science Puzzles: Making Meaning from Data* and http://www.hrecos.org/)

Oceans of Data Institute Instructional Sequence Template #3

Prediction

Procedure:

- 1) Based on either a conceptual model, physical model or computational model, students predict what data from the system under consideration would look like under various conditions.
- 2) Students examine professionally collected data taken under a range of conditions, looking for the presence or absence of predicted patterns.

Gould, P., Sunbury, S., & Krumhansl, R. (2012). Using online telescopes to explore exoplanets from the physics classroom. *American Journal of Physics*, *80*(5), 445-451.

Oceans of Data Institute Instructional Sequence Template #4

Hypothesis Array

Procedure:

- 1) Students are provided with text descriptions or sketches of several alternative working hypotheses (the "choice array") that might depict a process or structure of the system under consideration.
- 2) Students explore a database of professionally collected data, seeking to assemble evidence in support of one of the hypotheses.

Mayer, R. E., Mautone, P., & Prothero, W. (2002). Pictorial aids for learning by doing in a multimedia geology simulation game. *Journal of Educational Psychology*, *94*(1), 171-185.

Analyzing and clearly articulating the strategies used by experts.....

.... was not as valuable as providing a visual array of candidate answers.

Mayer, R. E., Mautone, P., & Prothero, W. (2002). Pictorial aids for learning by doing in a multimedia geology simulation game. *Journal of Educational Psychology*, *94*(1), 171-185.

Four ways to scaffold students' transition from small, studentcollected datasets to large, professionally-collected data bases

- (1) Use pre-selected snippets of high insight:effort ratio data ("Data Puzzles").
- (2) Nest a small student-collected data within a larger dataset.
- (3) Ask students to commit to a prediction of what they will see before they start making data visualizations.(4) Provide an array of candidate hypotheses.

A methodology for occupational analysis

Premise: experienced and respected practitioners can best define and describe their job or profession

Product:

- Definition of the job/career/profession
- Duties & Tasks
- Knowledge, Skills, Tools & Behaviors

Jay Parker Jet Propulsion Laboratory California Institute of Technology Kirk Borne George Mason University

Developing an Occupational Profile

Joseph Ippolito, Data

>

- writes sufficie

ch he visia lizations relevant data based on descriptions reality coastal at what is

hada from different sources mis leading Americanable

s The data tween problem statement to data reates a data dictionary tes data deagns workflow - implements workflow -stores the data -organizes the data -conduct data explor - identifies tools that needed for process -class data for ded -detects discrepances of - maps heterogeneous data -chindaid rzes heterogeneous -collecti data -secures data for 143 -prodects data for 143 -prodects data for 143 -detects metadata and that describe the

Occupational Profile

Gap analysis

How well is the current education system doing at preparing students for the tasks and duties of the big-data-enabled specialist?

- Disciplinary Core Ideas
- Cross-cutting Themes
- Practices of Science & Engineering #4: Analyze & interpret data

Comparison of ODI occupational profile tasks with NGSS Performance Expectations

DUTIES	TASKS											
5. Analyzes Data	5A. Develops analysis plan	5B. Applies methods and tools	5C. Conducts exploratory analysis (e.g., identifies anomalies, outliers, bias in sampling; visualizes)	5D. Evaluates results of the analysis (e.g., significance, effect, size)	5E. Estimates precision and accuracy of answer	5F. Determines level of confidence in results	5G. Compares results with other findings	5H. Answers the question (e.g., insights drawn from results)	5I. Submits preliminary findings for peer review	5J. Documents preliminary findings		
6. Communicates Findings	6A. Selects documentatio n media (e.g., dashboard, PowerPoint, e-mail)	6B. Compiles report	6C. Describes problem, method, and analysis	6D. Identifies limitations (e.g., data use, data application methods)	6E. Scopes data narrative based on time, depth, and method	6F. Prepares visualizations	6G. Guides interpretation	6H. Articulates conclusions	6I. Contrasts alternative approaches and past results	6J. Provides recommendat tions based on results	6K. Tells. *data story* to convey insight (e.g., talks to CEQ)	
7. Engages in Professional Development	7A. Seeks out mentors	7B. Stays current on emerging technologies, data types, and methods	7C. Attends relevant big data conferences	7D. Contributes new knowledge to the field	7E. Maintains professional library	7F. Participates in professional organizations	7G. Mentors others	7H. Engages in cross- discipline training	7I. Articulates value of big data activities to other departments/ functions of organization	7J. Articulates evolving role of big data in supporting organizational goals		

Abundant in NGSS

Potentially (implicitly) abundant in NGSS

Sparse in NGSS

Absent from NGSS

Occupational Profile tasks that are well-represented in NGSS

1. Defines the Problem

- 1B. Determines stakeholders' needs
- 1C. Articulates the question
- 1E. Translates question into a research plan
- 1F. Designs the experiment
- 1G. Develops deep domain knowledge of data source

2. Wrangles Data 2D. Collects data

5. Analyzes Data

5A. Develops analysis plan 5B. Applies methods and tools

- 5D. Evaluates results of the analysis (e.g., significance, effect, size)
- 5H. Answers the question (e.g., insights drawn from results)

Occupational Profile tasks that are absent from NGSS

2. Wrangles Data 2A. Performs data exploration 2G. Identifies outliers and anomalies 2N. Documents the process

- Manages Data Resources
 3D. Applies ethical standards
 3F. Protects data and results
- 4. Develops Methods and Tools4F. Iterates correctness ... of ... models
- 5. Analyzes Data
 5F. Determines level of confidence in results
- Communicates Findings
 6D. Identifies limitations (e.g., data use, data application methods)

Bottom line:

- It's a long, complicated pathway to grow a populace that has the skills and disposition to use data as part of their tool-kit when confronted with a difficult question or problem.
- There are effective instructional templates to build on experience with small, student-collected datasets towards proficiency with large, complex, professionally-collected data.

 Big-data enabled professionals value a suite of skills around data quality, data safety, and data ethics that may be missing from today's students.

kastens@ldeo.columbia.edu

For more information:

- Kastens, K. A., & Turrin, M. (2010). *Earth Science Puzzles: Making Meaning from Data*. Washington, D.C.: National Science Teachers Association.
- Kastens, K. A. (2011) *Learning to Learn from Data.* http://serc.carleton.edu/earthandmind/posts/datalearningpro.html
- Oceans of Data Institute (2014). Profile of a Big-Data-Enabled Specialist. http://www.oceansofdata.org/our-work/profile-big-dataenabled-specialist
- Kastens, K. (2015). Data Use in the Next Generation Science Standards. http://www.oceansofdata.org/our-work/data-nextgeneration-science-standards
- Kastens, K. A., Krumhansl, R., & Baker, I. (2015). Thinking Big: Transitioning your students from working with small student-collected data sets towards "big data". *The Science Teacher, 82*(5), 25-31.

