Research

From the Cosmos to the Core

Facilities & Equipment

The Department’s dozens of lab facilities offer state-of-the-art tools and expertise to conduct research across geoscience disciplines, while affiliated programs and centers serve as interdisciplinary research spaces between DGS and other research units within the Jackson School and UT. Department facilities include labs for geochemistry, mass spectrometry, thermo- and geochronology, mineral physics, a morphodynamics lab, and a high-resolution X-ray computed tomography facility. In addition to experimental labs, the Department is home to an extensive fossil collection. The Vertebrate Paleontology Lab ranks among the seven largest collections of fossil vertebrates in North America. The Non-Vertebrate Paleontology Lab hosts 4 million specimens, including many that are rare and important. The facilities are available for students, faculty and research scientists.

(U-Th)/He Geo- and Thermochronometry Lab
The UT (U-Th)/He Geo- and Thermochronometry Laboratory is a state-of-the art facility for the development of (U-Th) dating and its applications to tectonics, petrology, volcanology, stratigraphy, geomorphology, and geoarcheology. The facility houses: (1) 3 fully-automated UHV He extraction lines with 2 diode lasers, 1 Nd:YAG lasers, cryogenic purification systmes, quadrupole mass-specs, and step-heating apparati for diffusion measurements, (2) a Helix SFT magnetic sector noble gas mass-spectrometer with automated UHV gas extraction system with diode and excimer laser, (3) two Element2 HR-ICP-MS instruments for solution and laser ablation analysis for thermo- and geochronometery, as well as a dedicated clean room and sample preparation laboratories.
Analytical Geochemistry Lab
Analytical Lab for Paleoclimate Studies
The Jackson School of Geosciences now has four stable isotope laboratories. UTIG Director and DGS faculty member Terry Quinn supervises one of these labs: ALPS. The ALPS houses two, state-of-the-science, Thermo isotope ratio mass spectrometers and an Inductively Coupled Plasma-spectrometer (ICP).
Aqueous Geochemistry Lab
Characterizes the chemical properties of water and solids to support research in hydrogeology, geochemistry, and geomicrobiology. Equipment used: carbon analyzer (TC), Organic analysis Field and laboratory gas chromatographs, thermal desorber, high pressure liquid chromatographs, Inorganic analyses Ion chromatograph, autotitrator, field and lab spectrophotometers. BET sorptometer for N2, Ar, and Kr BET surface areas, and A microporosities, organic carbon analyzer.
Carbonate Petrography Lab
The lab is a combined effort of the Department of Geological Sciences and the Bureau of Economic Geology's Carbonate Reservoir Characterization Research Laboratory. The lab contains tools for characterization of carbonate outcrops including the most recent version of the Optech Ilris long-range ground-based LIDAR system and a full suite of interpretation software and high-end workstations using Innovmetric Polyworks, Petrel, GoCad, and standard ARC software tools. Other tools include low- and high-magnification petrographic scopes, digital photographic capabilities, and a cold-cathode microscope setup with low-light-capable photomicroscopy. An extensive collection of samples from classic carbonate field areas both modern and ancient is also available for comparative analysis.
Cathodoluminescence System
The desktop cathodoluminescence system provides valuable visual information from rocks and minerals not seen using regular light petrography or other electron beam equipment. Here, electrons bombard a regular rock thin section and the sample glows in visible light. A high-resolution digital camera captures the images. Applications include examining carbonate textures, quartz overgrowths and filled fractures in sedimentary rocks and understanding mineral zoning and fluid interactions in intrusive igneous rocks.
Digital Morphology Library
The Digital Morphology library (www.digimorph.org) is a National Science Foundation-funded initiative offering 2D and 3D visualizations of the internal and external structure of living and extinct vertebrates, and a growing number of non-vertebrates. Images are generated using the world's first high-resolution X-ray CT scanner in an academic science department, in the CT lab at the Jackson School.
Electron Microprobe
Installed in 2002-2003, the JEOL JXA-8200 electron probe microanalyzer (EPMA) is equipped with five wavelength dispersive spectrometers (WDS), an energy dispersive detector (EDS), and two image detectors in secondary and backscattered electron modes. The primary aim of the microprobe is quantitative elemental analysis of minerals on a microscale with high precision (less than a percent relative for major constituents) and low detection limits (commonly a few tens to few hundreds ppm)
Environmental Scanning Electron Microscope
Installed in the fall of 2001, this is a 30 kV tungsten gun high-resolution environmental scanning electron microscope (ESEM) with a 3.5 nm resolution in high vacuum, low vacuum, and environmental modes at 30 kV. The ESEM is equiped with a Peltier cooled stage, a heating stage, an EDS sytem (EDAX), a EBSD system (HKL Oxford Instruments), and a cathodoluminescence detector (Gatan).
Faceting Lab
The JSG gemology and lapidary laboratories comprises two separate facilities: 1) a teaching laboratory housing ten Vargas Fac-a-Gem faceting machines, a custom-built gemstone preformer, and allied tools, equipment (e.g. refractometers, polariscopes, spectrascope, gem microscope, etc.) and displays for faceting and identifying gemstone; 2) a dedicated laboratory with table-top and free-standing rock saws, grinders, sanders and polishing equipment for producing polished rock slabs and cabochons. The laboratories are used by students enrolled in a Gems and Gem Minerals course who receive instruction and introductory training in gemstone identification and the lapidary arts and, less frequently, by graduate students and faculty requiring precision cutting and grinding capabilities for mineral or rock samples.
Fission Track Thermochronology Laboratory
Enables analysis of fission tracks in apatite and zircon to constrain the low-temperature time-temperature (t-T) history of sedimentary, igneous, and metamorphic rocks.
Flash Flood & Tsunami Flume
The Flash Flood and Tsunami flume is a large (approximately 40 x 1.5 x 0.8 m) outdoor flume with a computer-controlled headbox lift gate that generates reproducible flood bores. It is being used to study the hydraulics and sediment transport of rapidly changing hydrographs.
Fluid Inclusion Lab (DGS)
The fluid inclusion laboratory is based around a modified USGS-type gas-flow heating/freezing stage capable of microthermometry of fluid inclusions over a range of 700° to -180°C. The stage is mounted on an Olympus BX51 microscope with a 40X long-working distance objective, 2X image magnifier, and digital camera for image capture. The microscope also has capability for UV fluorescence petrography. Complementary facilities are available for reflected and transmitted light petrography and image capture.
Gas Chromatography Mass Spectrometry Laboratory
Geometrics GEODE Seismograph Systems
The Department has 2 boxes (total 48 Channels) with 48 vertical phones and 16 3 component phones).
Geomicrobiology Laboratories
Facilities for culturing and characterizing aerobic and anaerobic prokaryotes (Eubacteria and Archaeabacteria) using a Coy anaerobic chamber (H2/N2 atmosphere), Constant temperature water baths, autoclave, incubator, horizontal and vertical gel rigs, refrigerated centrifuge, UV light box, Thermalcycler, phase-contrast and fluorescent microscope. HPLC and GC facilities for degradation studies.
Geophysics Software
Landmark and Geoquest software is used for processing and interpreting 3 dimensional seismic data.
High Temp. Stable Isotope Lab
This newly renovated lab is overseen by Jaime Barnes and houses a ThermoElectron MAT 253 with associated peripheral devices and instrumentation (TC/EA, GasBench II, Conflo IV, online silicate laser extraction line, general purpose vacuum extraction lines, Cl purification line). Instrumentation permits measurements of the stable H, C, N, O, S, and Cl isotope ratios of silicate, phosphate, and carbonate minerals, volcanic gases, air, and waters
High-Resolution X-ray Computed Tomography Facility
Provides high resolution non-destructive, density maps of solid samples (rocks, fossils, etc) up to a maximum size of 50 cm diameter by 150 cm high (50 kg mass). Equipment: An industrial CT scanner that is an adaptation of medical CAT scanners.
HPLC Mass Spectromtery Laboratory
HR-ICP Mass Spectrometers
Equipment available: Thermo Element2 HR-ICP-MS with ESI autosampler system for solutions; and Thermo Element2 HR-ICP-MS with Photonmachines Analyte G2 Excimer laser ablation system.
Hydro Lab
This lab is dedicated to hydrogeology and environmental geology courses. It has facilities for grain-size analyses, porosity/ permeability testing, and a wide variety of lab demonstration techniques. It is also used as the base for groundwater field methods courses.
Hydrogeophysical Equipment
These tools include: 1) Electrical Resistivity Meter. The AGI SuperSting R8 IP is an 8-channel resistivity and induced polarization imaging system specially designed for large surveys where speed of data acquisition is of essence. Can be used for land applications with 6 m spacing, underwater applications with 2 m spacing, or boat-towed surveys with 1 to 5 m spacing. 2) Infrared Camera. The FLIR ThermaCAM SC640 is a high-resolution thermal infrared camera. The portable handheld radiometer (7.5 to 13 micron wavelength) takes images at 640x480 pixels at rates of down to 16 Hz. The precision of the camera is 0.08 C.
Infrared (FTIR) Spectroscopy
This lab uses Fourier-Transform Infrared (FTIR) analyses to measure dissolved water and carbon in natural and experimental silicate glasses. The lab is equipped with a Thermo Electron Nicolet 6700 FTIR spectrometer and Continuum IR microscope, equipped with automated x-y-z stage and stage purge system so that the spectrometer, microscope, and sample position are all purged with dry air that has <10 ppm CO2 for very precise measurements of CO2 poor glasses. Dedicated polishing facilities are also available for sample preparation.
Isoprobe ICP Mass Spectrometer
The IsoProbe MC-ICP-MS is a multicollector, magnetic-sector inductively coupled plasma mass spectrometer featuring a hexapole collision cell immediately behind the interface region of the ICP, and the multicollector contains nine Faraday collectors, three channeltron ion-counting detectors for low-level signals (ion currents below 10-16 amp), and an axial Daly detector located behind a wide aperature retarding potential filter for high abundance sensitivity on the Daly detector. The IsoProbe mass spectrometer is capable of making isotope ratio measurements in a large number of systems, including Ca, Fe, Cu, Se, Rb-Sr, Sm-Nd, Lu-Hf, Re, common Pb, Th-U series isotopes, and in situ laser ablation measurements of Sr, common Pb, Lu-Hf, and U-Pb.
Isotope Clean Lab (Banner)
The Isotope Clean Lab is a 600 square foot clean chemistry lab with seven Class-100 workspaces for preparation of rock, mineral, soil, plant and water samples for chemical and isotopic analysis under low-contamination conditions.
Isotope Clean Lab (Lassiter)
Within the Department of Geological Sciences there are three clean-room laboratories supplied with HEPA-filtered class 100 air where sample preparation and ion-exchange chromatography for isotopic analysis may be done under ultra-clean conditions, making possible very low analytical blanks (e.g., < 1 pg Pb for U-Pb geochronology, and <10 pg Sr). There are also two other laboratories with HEPA-filtered work stations where sample preparation and ion-exchange chromatography are performed. These labs are affiliated with the Mineral Separation Facility (see description).
Mineral Physics Lab
The Mineral Physics Laboratory has a variety of diamond anvil cells (DACs) and relevant facilities that allow the study of planetary materials (minerals, fluids, glasses, single-crystal and polycrystalline compounds) under under extreme high pressure-temperature conditions. The DACs are integrated with laser and synchrotron X-ray spectroscopic techniques to probe material properties.
Mineral Separation Facility
Includes shatterboxes for sample pulverization, a crusher, a disc mill pulverizer, a Rogers table, a Wilfly table, a mica table, sieves, heavy liquids and Franz magnetic separators for mineral separation.
Narrow Temperature-controlled Open Channel Flume
Custom built 5-m tilting flume. Width: 30 cm. Depth: 1 meter. Other features: 3 removable windows with septa ports, fluids can be extracted or injected from the floor.
Non-vertebrate Paleontology Lab
NPL, part of the Texas Natural Science Center, was created in 1999 as an answer to the increasing conservation and curation issues developing with the huge increase in collection size. Collections placed in the care of TNSC mainly were derived from research at the BEG, the UTDGS and the Museum (TMM) itself. Other material came from orphaned collections within Texas. Numerous other collections have been contributed as donations. Although an exact count has never been made, the collection is estimated to contain about 4 million.
Paleoclimatology and Environmental Geochemistry Laboratory
Major instrumentation includes: (1) Gas chromatograph-single quadrupole mass spectrometer (GC-IRMS) for quantification and identification of organic compounds, and (2) HPLC-signgle quadrupole mass spectrometer (HPLC-MS) equipped with intelligent fraction collection for identification, quantification and isolation of high molecular weight compounds.
Paleolimnology Laboratory
Paleomagnetic Lab
There are several aspects to our laboratory that make it different from others. One is our automatic handler system created at California Institute of Technology and adapted for our needs. Scientists and students can keep up with changes to our system by keeping in touch with the other 6 similar systems in the world and RAPID Consortium at http://rapid.gps.caltech.edu/. It also includes a cryogenic magnetometer and portable magnetic susceptibility meter (TerraPlus KT-10 Plus).
Petrographic Microscopes
Micro-scale imaging of rocks using directly observed visible light. Equipment: Low-power stereo microscopes, high resolution low-magnification scanned imaging, transmitted and reflected cross-polarized microscopy, high resolution 3D light microscopy (Edge R400) UV-stimulated fluorescence microscopy, microscope-mounted CL Photomicrography systems for all of these methods, both digital (Polaroid DMC) and conventional film.
Portable Gravimeters
We own two instruments: (1) LaCoste-Romberg G meter (precision ~50 microGals), and (2) ZLS Burris gravimeter (precision ~5 microGals).
Portable Seismometers
Broad-band Guralp seismographs for regional studies of the crust and mantle
Quadrupole ICP Mass Spectrometer
The Quadrupole ICP-MS laboratory (with laser ablation) is used for elemental determinations in a wide range of liquid (e.g., natural waters, dissolved sediments/rocks, digested biomass) and solid (e.g., rocks, minerals, glasses) samples. The ICP-MS instrument is an Agilent 7500ce, capable of measuring trace element concentrations in solution over a nine-order linear dynamic range, from ppt to 100s of ppm. Sample introduction systems include a Micromist concentric nebulizer with a Peltier-cooled spray chamber for aspirating solutions, and a New-Wave UP193-FX 193 nm excimer laser ablation system for micro-sampling of solids. Sub-ppm detection limits are obtained routinely by laser ablation. The Agilent 7500ce is equipped with a collision/reaction cell, allowing for quantification of environmentally important matrix/plasma-sensitive elements such as As, Se, and Fe. The instrument is housed in a positive-pressure HEPA-filtered laboratory equipped with a weighing station, laminar flow bench, and Type 1 (18.2 M?) ultrapure water station.
Scanning Electron Microscope Lab (DGS)
Installed in 2008, this is a high-performance, 30 kV tungsten gun scanning electron microscope with a high resolution of 3.0 nm. The low vacuum mode allows for observation of specimens which cannot be viewed at high vacuum due to a non-conductive surface. This SEM has three detector systems - secondary electron (SE), backscattered electron (BSE), and X-ray EDS detectors.
Skeleton Preparation Facility
Located at the VPL Annex on the Pickle Research Campus, the Skeleton Preparation Facility is used to transform fleshy carcasses of modern animals such as birds, mammals and reptiles into clean skeletons for comparison with paleontological specimens.
Stable Isotope Lab for Critical Zone Gases
This lab is designed for the study of caves, soils and vegetative canopies. The GasBench II and Thermo Electron 253 in the High Temp. Stable Isotope lab are currently being used to measure the carbon isotope composition of soil and cave CO2, CO2 respired in soil respiration experiments, and dissolved inorganic carbon and calcium carbonates from multiple environments.
Structure Lab
The structural geology lab is where rocks are processed for structural geology and tectonics research. Storage space and all necessary equipment are available for preparing slabs, thin sections, and mineral separation for geochronology.
Superconducting Gravimeter Lab
A GWR superconducting gravimeter (precision ~0.01 micrGals) configured to be transportable, used in hydrologic and other studies. This is usually deployed in the field for campaigns of months and longer.
Thermal Ionization Mass Spectrometry (TIMS) Lab
Measures the isotopic compositions and elemental concentrations of Rb-Sr, Sm-Nd, Lu-Hf, U-Th-Pb, Li, B, Mg, K, Zr, and REE. Equipment: Seven-collector Finnigan-MAT 261 thermal ionization mass spectrometer (1987) A single-channel ion-counting systems.
U-Pb Geochronology (TIMS) Laboratory
Provides precise, conventional U-Pb ages in support of research to both internal and external collaborators (faculty, graduate students and researchers). Equipment: clean laboratory, with 3 laminar-flow HEPA-filtered workstations and related equipment for ultra-clean chemical separation.
U-Pb Geochronology Clean Labs
Within the Department of Geological Sciences there are three clean-room laboratories supplied with HEPA-filtered class 100 air where sample preparation and ion-exchange chromatography for isotopic analysis may be done under ultra-clean conditions, making possible very low analytical blanks (e.g., < 1 pg Pb for U-Pb geochronology, and <10 pg Sr). There are also two other laboratories with HEPA-filtered work stations where sample preparation and ion-exchange chromatography are performed. These labs are supported by the departmental sample preparation facility, which includes shatterboxes for sample pulverization, and a crusher, a disc mill pulverizer, a Rogers table, a Wilfly table, a mica table, sieves, heavy liquids and Franz magnetic separators for mineral separation.
UT Experimental Deep Water Basin
The UTDW Basin is an experimental tank designed to physically model morphodynamic and stratigraphic evolution of continental margins and other subaqueous sediment transport systems. It is 4 m wide, 8 m long, and 2 m deep. The tank has 5 observation windows, underwater lighting and an array of synced overhead cameras. The facility is designed to map underwater deposit surfaces in space through time and measure fluid dynamic and sediment transport properties of formative density flows.
UT Sediment Transport and Earth-surface Processes (STEP) Basin
The STEP Basin is an experimental flume designed to physically model morphodynamic and stratigraphic evolution of the fluviodeltaic system. It is 4 m wide, 5 m long, and 1.5 m tall. This facility is one of only three in the world with a computer-controlled basement motion, which can mimic 1) fore-hinge (passive margin), 2) back-hinge (foreland basin), and 3) lateral tilting subsidence patterns.
Vertebrate Paleontology Lab
The Vertebrate Paleontology Laboratory (VPL) is known worldwide as a major repository for unique scientific collections from the American Southwest. VPL was founded in 1948 by John A. Wilson, Emeritus Professor of Geology at The University of Texas at Austin. Today, VPL is the principal repository for vertebrate fossils collected from state and federal lands in Texas and contiguous areas, as well as for specimens collected elsewhere using state and federal funds. The fossil vertebrate holdings of VPL rank among the seven largest in North America.
Vibroseis Seismic Sources
For both low and high frequency 3-axis shaking. These are managed through the NSF facility in Civil Engineering. Clark Wilson is a co-PI of this and they have used one of them to support a geophysics field camp last summer.
Volcanology Lab
This lab is equipped with a Spectrex PC-2200 Laser Particle Counter and several sets of 8" brass mesh sieves to analyze volcanic particles in sizes from centimeters down to 1 micrometer for determining size distributions of volcanic tephra deposits and their componentry.
Walter Geology Library
The primary research collections of the library presently include more than 100,000 book and journal volumes and 46,000 geologic maps, among them the publications of the U.S. Geological Survey, most state geological surveys, and those of many foreign countries. Regional emphasis of the collection is on the Southwestern United States, Texas, and Mexico. The Institute and Bureau also have extensive libraries related to their specific research areas.
Wind Tunnel/Flume Lab
The Department of Geological Sciences maintains two wind tunnels for experiments in aeolian transport. One tunnel (0.5 m2 X 10 m) features a long transport section that ends in a slipface. The second tunnel features a rotating table (1 m in diameter) that can be used to simulate any range of wind directions.
X-Ray Diffractometer (XRD)
Installed in 2008, the Bruker D8 Advance X-Ray Diffractometer (XRD) provides routine, non-quantitative mineral identification in rock powders. The D8 XRD is now driven by automation software with integrated pattern analysis by Bruker EVA and Topas using the ICDD PDF-2 Minerals database. Samples for XRD must be carefully ground rock powders (no gritty lumps) or fine size fractions separated by centrifugation or gravity settling.