

Operational Perspectives on Hydrologic Model Data Assimilation

Rob Hartman

Hydrologist in Charge NOAA / National Weather Service California-Nevada River Forecast Center Sacramento, CA USA

Outline

- Operational Background and Context
- Data Assimilation (DA) Goals
- DA Advantages
- DA Pitfalls
- Common DA Examples
- DA GAPS and Needs

USA NWS Field Offices

9 National Centers for Environmental Prediction (NCEP)

13 RFCs River Forecast Centers

122 WFOs Weather Forecast Offices

CNRFC Customers

WFOs

RFC

N

Public Warning

Water and Flood Management Agencies, Utilities

Available CNRFC Forecasts

Short RangeMedium RangeLong Range0-5 days6-14 days> 14 days

Driven by weather forecasts & scheduled reservoir releases

Driven by a combo of weather forecasts & climatology

Driven by climatology

Forecast	Duration	Season	Frequency	Probabilities
Flood / Routine	5 Days	Year-round	Daily +	No
Ensemble Streamflow Prediction	User selectable to ~1 year	Year-round	Daily	Yes

River Guidance - Graphics

- Issued with each model run
- -/+ 5 days
- Obs + Forecast + Guidance
- Available
 - CNRFC Website
 - CDEC Website
- Interpretation
 - Online help
 - 1 page flier

(www.cnrfc.noaa.gov)

RUSSIAN RIVER - GUERNEVILLE (GUEC1) **Elevation: 65 Feet** Latitude: 38.50° N Longitude: 123.00° W Location: Sonoma County in California **River Group: Russian Napa** Issuance Time: Oct 24 2010 at 1:35 PM PDT Next Issuance: Oct 25 2010 at 9:00 AM PDT Monitor Stage: 29.0 Feet Flood Stage: 32.0 Feet 2.50 2.50 Rain 2.00 2.00 Rain + Melt (in) + 1.50 1.50 Melt 1.00 1.00 Ĵ 0.50 0.50 0.00 0.00 11.0 5740 10.3 5040 9.6 4270 8.9 3510 Discharge Stage (ft) 8.2 2910 7.5 2280 (cfs 1780 6.8 6.1 630 5.4 200 4.7 0 4.0 0 19.01p 20.01p 21.01p 22.01p 23.01p 24.01p 25.01p 26.01p 27.01p 28.01p 29.01p Pacific Local Time (Day.Hour) Observed - Forecast - Guidance California Department of Water Resources Generated 10/24/2010 at 01:35 PM PDT NWS / California Nevada River Forecast Center

Ensemble Streamflow Prediction

- Use same forecasting infrastructure as Flood/Routine forecasts (CHPS)
 - Same models, observed data, model states
- Modeling system run with multiple scenarios of future precipitation and temperature
 - Scenarios are

NOAA

- Spatially and temporally coherent
- Equally likely
- Resulting streamflow scenarios form a set that can be statistically sampled and analysed

Hydrologic Ensemble Uses

- Short-range (hours to days)
 - Watch and warning program
 - Local emergency management activities
 - Reservoir and flood control system management
- Medium-range (days to weeks)
 - Reservoir management
 - Local emergency management preparedness
 - Snowmelt runoff management
- Long-range (weeks to months)
 - Water supply planning
 - Reservoir management

ESP Product Generation

Significant flexibility

- User selectable time aggregation
 - 6 hrs to 1 year
- User selectable window
 - Days, weeks, months or multiples there of
- Information on
 - Peaks and minimums
 - Number of days to critical thresholds (e.g. Flood Stage)
 - Volumes

CNRFC Ensemble Forecasts

- Updated daily
- 150+ locations
- 365 day duration
- 8 standard graphics
- Build your own interface
- Includes 14 days of weather forecasts

Sample Ensemble Products

Ambele 27 NP N Longhole 19 27 8 Encodes Add Feet Scatters Margana Canty in Cellenia Receiver Receiver States and Scatter States and Scatter Scatters Receiver States and Scatter States

MERCED RIVER - EXCHEQUER RESERVOR (EXOCI)

MERCED RIVER - YOSEMITE AT POHONO BRIDGE (POHC1) Landark T777 N Legiture: 18.67 N Excelors 1800 Peer Landark Malayasa Guray to California River Group Ser Analysis Insurer Taxe, in 19.191 / 19.7 (19.70)

 Use available "information" to improve the performance of a specific model or model outcome

DA Advantages

- Essential in "fast response" situations where there is no time for manual analysis
 - Flash flooding
 - Fully automated short-term forecasting systems

DA Advantages

- Consistent DA is more reproducible than subjective forecaster specified adjustments
 - Implications for post-processing and hind-casting

DA Pitfalls

- Updates to improve performance in one time domain (e.g. short) may degrade performance in another (e.g. long)
- Improved simulation does not guarantee improved forecast performance
- Forecasters don't (won't) trust what they can't see or understand
- May reduce the need for the forecaster to understand what the models are doing (Robotic Operations)

State-Space Updating

Common DA

Runtime MODIFICATIONS

Using observed streamflow to infer appropriate adjustments to:

- Model states
- Timing and magnitude of forcings

[1] 10-25-2010 18:00:00 Current FTJC1H_Forecast

[1] 10-25-2010 18:00:00 Current FTJC1H_Forecast

Common DA

- Model state adjustment based on field observations
 - Snow model updating
 - Observed point SWE

Snow Model Updating

Regession-based

- Principal components
- Combination analysis
- Automatic selection
- Historical snow water observations
- Historical simulated SWE from calibration
- Predict simulated SWE based on currently available SWE observations.

- Using observed streamflow to make model state adjustments when the model is complex
 - Multiple model components (snow, soil, etc.)
 - Multiple (elevational) subareas
- Snow pack temperature (heat content)
- Soil moisture observations

Snowpack Temperature

 High level of uncertainty in the heat content of the snowpack in late winter and early spring

 Forecasters accommodate simulation errors by making melt factor corrections to the snow model

- Observed period
- Forecast period (very risky)

Soil Moisture Observations

- Fair number of observations are becoming available
- Can be a high spatial frequency data set
- Need tools to relate observations to model states
 - Especially important to CNRFC in the Fall
- Some models may be better structured for updating

- Operational forecasters perform *manual* data assimilation by leveraging their expertise
- Automatic DA is critical for very short lead times where manual analysis is not feasible
- DA techniques should be engineered to assist the forecaster in *understanding and applying* the most appropriate adjustments suggested by the data

Thank You