

Developments in Water Supply Forecasting: Combining New Methods and Existing Models

Anthony J. Anderson
Hydrologist
Arkansas-Red Basin River Forecast Center
National Weather Service

CAHMDA/DAFOH Workshop University of Texas-Austin September 12, 2014

"There are an infinite number of ways to get the right answer for the wrong reason"

Talking Today

- 1. ABRFC Water Supply Program
- 2. ABRFC Water Supply Methods
 - 1. Deterministic Forecasts
 - 2. Ensemble / Probabilistic Forecasts
 - 1. ESP
 - 2. HFFS
- 3. Future Development
 - 1. Ensemble Forecasting Techniques
 - FSP
 - 2. HFFS
 - 2. Forecast Frequency
 - 3. Customer Needs and Expectations

Arkansas River Basin Forecast Points (Colorado)

Canadian River Basin Forecast Points (New Mexico)

Forecast Point	Drainage Area	Forecast Type			
ARGC2	427	Native Flow			
PTRC2	795	Native Flow			
SALC2	1,218	Native Flow			
CNCC2	3,060	Native Flow			
PDAC2	4,670	Native Flow			
CLVC2	56	Native Flow*			
HMZC2	73	Native Flow*			
CHKC2	88.7	Native Flow*			
GCWC2	320	Native Flow*			
	New Points				
LARC2	14,245	Observed Flow			
LAPC2	3,441	Observed Flow			

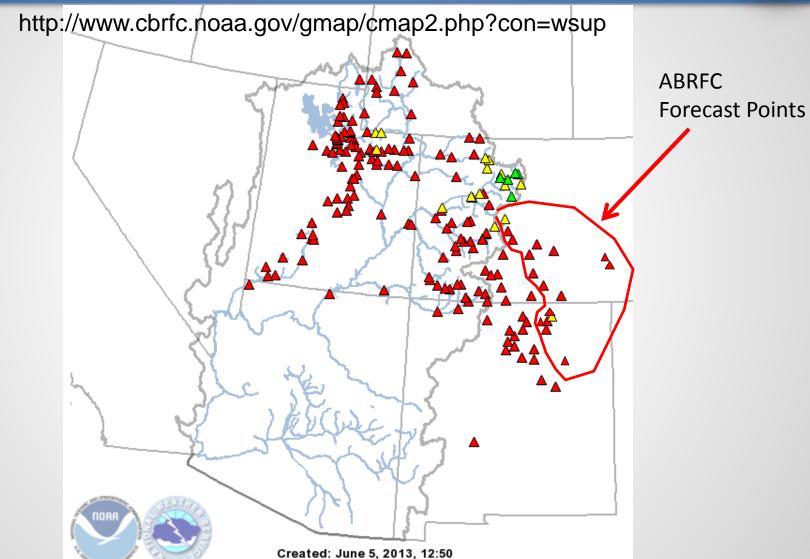
Forecast Point	Drainage Area	Forecast Type
EGLN5	167	Native Flow
CMMN5	294	Native Flow
CNCN5	7,409	Native Flow*
CRCN5	65	Native Flow*
CMRN5	294	Native Flow*
DAWN5	301	Native Flow*

^{*} Indicates no adjustments are made to the data to account for upstream reservoirs or diversions.

RED Indicates unique verification conditions

Summary Data

Group	Number	Drainage Area Average and Range
Colorado Points Native Flow	9	1,190 mi2 (56 – 4,670)
Colorado Points Observed Flow	2	8,843 mi2 (3,441 – 14,245)
New Mexico Points	6	1,422 mi2 (65 – 7,409)

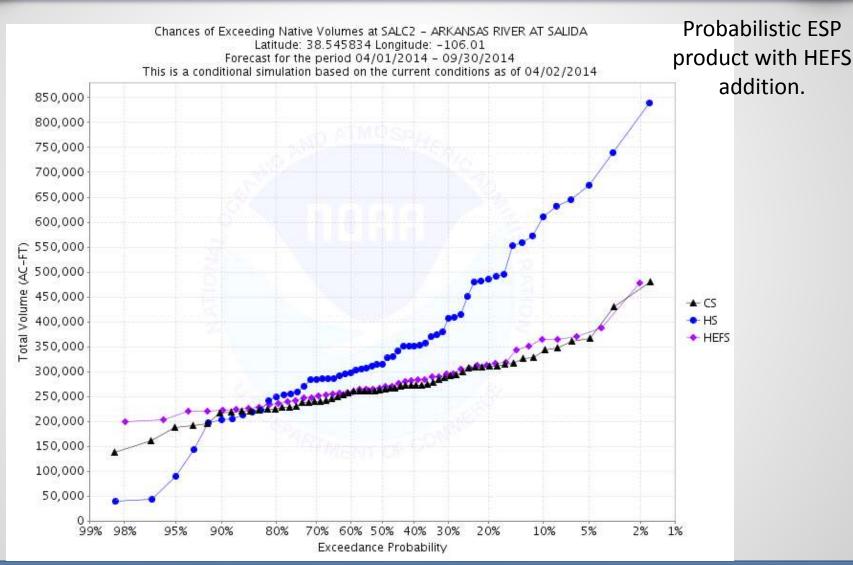

The Arkansas-Red Basin River Forecast Center in the NWS Water Supply Regime

	NWRFC	CNRFC	CBRFC	MBRFC	WGRFC	ABRFC	NWS
Forecast Points	126	150	157	58*	21	17	529
Staff	12	5	5	5	1+	1	29

CBRFC WSP Front Page

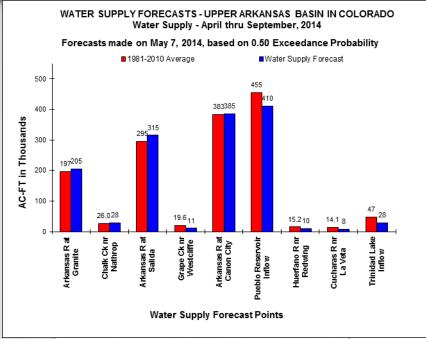
Current Methods

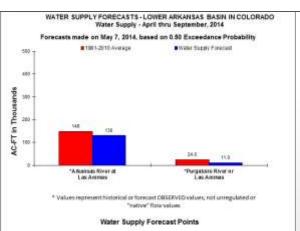
- Statistical Water Supply
 - Multivariate Regression Based Forecast methods
 - Static. Suited to once monthly deterministic forecasts
 - Can be and is used to generate probable maximum and minimums
- Ensemble Streamflow Prediction
 - Runs a hydrologic model with historical weather data
 - Creates an ensemble of "potential" hydrologic outcomes
 - 1 hydrologic outcome for each year of historical data
 - 50th percentile of the ensemble is used as a deterministic forecast
- Coordination with experts at the NRCS
 - NRCS forecasters produce similar forecasts
 - Historically a single value was coordinated between agencies
 - Now forecasts are collaborative but may differ

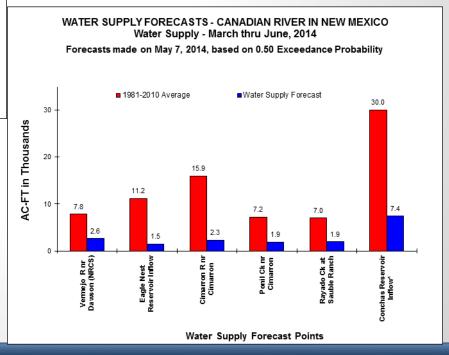


Current Methods

- SWS and ESP forecasts were combined (usually but not always averaged)
- NWS average was relayed to NRCS and compared to their forecast.
- ABRFC and NRCS would come to agreement on a final deterministic forecast.
- The SWS software would be used to calculate a new probable max/min values based on distributions associated with the primary forecast equation.







Traditional Web Products from the ABREC

U.S. Department of Commerce

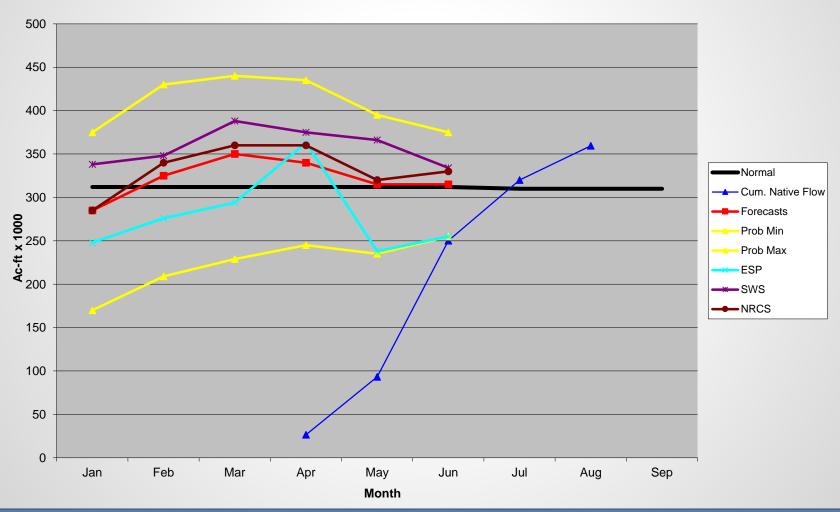
National Oceanic and Atmospheric Administration
National Weather Service, Arkansas Red River Forecast Center

10159 East 11th Street, Suite 300 Tulsa, Oklahoma 74128-3050

2014 Water Supply Forecast

Issued as of May 7, 2014

Forecast Runoff						Average Runoff			
		Most		Reason	Reasonable		Reasonable		30YR
		Probable		Maxir	num	Minimum		1981-2010	
Forecast	Forecast	%			%		%		
Point	Period	1000	30YR	1000	30YR	1000	30YI	3	1000
	(*)	AF	AVG.	AF	AVG.	AF	AVG		AF
*	(1)Apr-Sep								
*	(2)Mar-Jun								
UPPER ARKANSAS RIVER BASIN, COLORADO									
ARKANSAS RIVER									
Granite, Co	001	205	104	260	132	1	50	76	197
Salida, Co	001	315	107	395	134	2	35	80	295
Canon City, Co	001	385	101	495	129	275		72	383
Pueblo Abv, Co	001	410	90	555	122	2	65	58	455
GRAPE CREEK									
Westcliffe Nr, Co	001	10.6	54	21.0	107	1	.3	7	19.6
CUCHARAS RIVER									
Boyd Ranch, La Ve	eta 001	8.0	57	13.1	93	3	.0	21	14.1
PURGATOIRE RIVER									
Trinidad, Co	001	28.2	60	47.0	100	11	.3	24	47
HUERFANO RIVER									
Redwing Nr, Co	001	10.4	68	14.2	93	6	.6	43	15.2
CHALK CREEK									
Nathrop Nr, Co	001	28.0	108	36.0	138	19	.5	75	26.0
LOWER ARKANSAS RIVER BASIN, COLORADO									
**ARKANSAS RIVER									
Las Animas, Co	001	130	88	230	155		31	21	148
**PURGATOIRE RIVER									
Las Animas, Co	001	11.0	46	31.0	129	5	.6	23	24.0


Traditional text product from the ABRFC

Arkansas River at Salida 2014 Forecasts and Native Flow

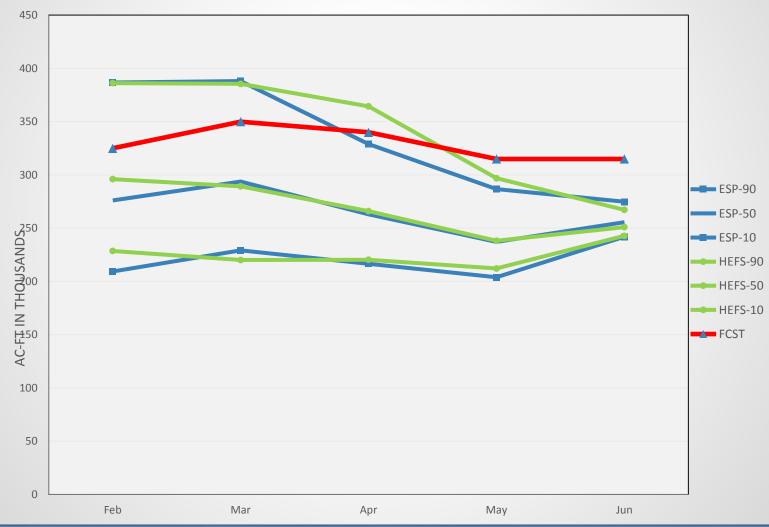
Problems in Methodology

- Relationship between deterministic forecasts and the probable max/min are suspect
- Western customers are requesting more frequent forecasts with more uncertainty information
- SWS software is ancient and is losing support
- Increased Emphasis on ESP and HEFS as our primary forecasting tools
- Current method does not allow for increased forecast frequency

Solutions (and new problems)

Solutions

- HEFS and ESP
 - Provide consistent probabilistic forecasts
 - Can provide an array of forecast graphics and products
 - Allow for increased forecast frequency
 - Better able to identify trends through forecast season


New Problems

- No requests by customers for probabilistic forecasts
- No requests by customers for increased forecast frequency
- SWS may be our best forecasting tool for deterministic forecasts
- NRCS definitely adds value to our deterministic forecasts
- HEFS is currently under development and testing.

SALC2 ESP-HEFS-FORECAST FOR 2014

Questions moving forward

- Can we continue to provide the same deterministic forecasts and the same skill, in the new probabilistic paradigm?
- How can we assimilate the skill of the NRCS into our forecasts?
- How can we assimilate the deterministic predictive skill of station data (SWS)?
 - NRCS SNOTEL and Snow course Data
 - NOHRSC Snow Water Equivalent estimates
 - Precipitation data

Solutions

- Benefit from the experience of others.
 - Learn from those who went before us
 - (and steal their ideas)
 - Improve our model
 - Improve our precipitation estimation
- Education
 - Outreach
 - Training
- Innovation
 - Force the system to provide what our customers want

Solutions

- More Intense Model Balancing
 - Increased Frequency
 - Increased Intensity
 - Improve data ingest of location and time specific sources
- Model Calibration
 - Greater emphasis on SNOW-17 calibration
- Innovation
 - Force the system to provide what our customers want

Questions????

Comments???

Suggestions???

Anthony J. "Tony" Anderson
Hydrologist
National Weather Service
Arkansas-Red Basin River Forecast Center
tony.anderson@noaa.gov

918-832-4109

Anthony J. "Tony" Anderson
Hydrologist
National Weather Service
Arkansas-Red Basin River Forecast Center
tony.anderson@noaa.gov
918-832-4109