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<>Cha||enges of data assimilation for operational hydrology

<>Maximum Likelihood Ensemble Filter (MLEF) — ensemble-variational
method

<>Some MLEF results from atmospheric applications
<>Potential benefits of coupled data assimilation

<>Future development



Chﬁnges of DA for operational /@M
hydrology: Methodology

* Multi-component control variable
* Error covariance / uncertainty

* Nonlinearity and non-differentiability
- processes
- observations

®* High dimensionality

®* Computations

® Algorithm efficiency and robustness



Multi-component-eontrol variable €IRA

®* Empirical parameters

* |nitial conditions

® Systematic model error

* Forcing (e.g., precipitation)

= State vector (x)

o A (smallest) subset of variables defining a dynamical/physical system
Typically it refers to the initial conditions only

o In general, it may include initial conditions, model errors, and empirical

O

parameters
T
x:( p T wmnd ¢g,, O3 q, T, param, param, )
T T
p=( P - Dy ) T=( L. Iy )

° From mathematical and algorithmic points of view there is nothing different
* However, parameters/model error require a model for uncertainty growth



Practical data assimilation algorlthms CIRA
Basic methods suitable for operations

Variational DA Ensemble DA

Forecast uncertainty pre-defined, static = Forecast uncertainty is flow-dependent,
ensemble-based

Forecast uncertainty has all required Reduced number of degrees of freedom
degrees of freedom
Maximum a-posteriori estimate Minimum variance
Iterative minimization Linear KF solution
Employs adjoint (e.g., transpose) No need for adjoint operator, use
operator difference of nonlinear functions

Hybrid variational-ensemble methods are used in weather operations
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Flow-dependent forecast error /Q}RA

~Covariance

grid-point

time

obs

1

Geographically distant observations can bring
more information than close-by observations,
if in a dynamically significant region




gprpdct of static.error cova riance‘_/@}RA

Correlation

\ length scale
grid-point \\
A o

FaY)

obs

obs,

Low-valued information (obs,) will be assimilated
instead of a high-valued information (obs,)




Insufficient rank of forecast error

__covariance in ensemble m

Full model space

Ensemble space

Observations

Model space dimensions ~ O(107)

Ensemble space dimensions ~ O(10') — O (10?)

3 %RA

Observation outside ensemble space cannot be assimilated!




Role of forecast error covariance @}RA
i

Forecast error covariance plays a fundamental role in data assimilation

-1
x*=x' =P,H" (HP,H" +R) [y-h(x)]=Pz,,
Singular Value Decomposition (SVD):

Pfl/ P=VIW' = Eaiviwf

VAR vl A w v
i i

» Analysis update is defined in the * Transformed observation
subspace spanned by forecast error mcrements_ Zobs need to
covariance SVs have a projection on SVs

« Uncertainty magnitude has
to be non-negligible
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Forecast uncertainty — 32 ensemM%RA
_ (Typhoon Nobi, valid 03 Sep 2005 0300 UTC)

Insufficient forecast uncertainty
prevents successful assimilation

Specific humidity (g/kg)
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Sufficient forecast uncertainty makes possible successful assimilation
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Nonlinearity (and-nen-differentiability) €IRA

4 Physical processes and observation operators are nonlinear
[ Closed form solution does not exist for nonlinear DA

. common approach to nonlinearity is to use iterative minimization

- constrained: Gauss-Newton, Levenberg-Marquardt, ...

- unconstrained: Conjugate-gradient, Quasi-Newton, ...
Xpy =X, T 044,
Gd, =-g,

J Choose minimization algorithm adequate for the problem

- use non-smooth algorithms if function/gradient discontinuities (e.g., LMBM)
- use genetic/simulated annealing algorithms if multi-modal pdf

4 Compromise between accuracy and efficiency
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‘Hessian preconditioning ——

(Hessian matrix = second derivative of the cost function)

* Optimal Hessian preconditioning:
- Improves minimization efficiency
- Improves the accuracy (e.g., avoids error saturation)
- Increases the robustness of minimization

Physical space

g Preconditioning space
Aa> O zo
J=const.

Convergence is independent of the first guess in the transformed space
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Computation: High dimensionality GIRA
impacts the calculation of matrix
inverse, thus Hessian preconditioning

(1) variational: neglect “difficult” matrix in inversion and apply nonlinear
iterative solution method

[Pf_l + HTR_lHT1 =P = X =X+ 0P H R (y—h(x,))

(2) ensemble: use reduced rank (RR) matrix inversion and compute linear
solution

(P +H'RH) = [(P]:1 +H'R'H) }

RR

= x=x +[(Pf‘1+HTR‘1H)_1HTR_1} [y—h(x")]
R

R
(3) reduced rank hybrid: reduced rank matrix inversion and nonlinear
iterative solution method

[Pf‘1+HTR“H]_1z[(Pf“+HTR‘1H)_1} = xkﬂ:xk+ak[(Pf“+HTR_1H)_1HTR“] [y—h(x,)]

RR RR

Computational overhead ultimately impacts the choice of DA methodology
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A hybrid-data assimitation-method: = €IRA
Maximum Likelihood Ensemble Filter (MLEF)

Prediction Model
Ensemble + Control

FIRST GUESS

|
|
|
L Use optimal Hessian preconditioning I
|
|

O Employ most adequate nonlinear
iterative minimization algorithm

Observation operators
Ensemble + Control

O Modular algorithm structure
facilitates using a variety of models
and observation operators

ITERATIVE MINIMIZATION

MINIMIZATION

O Applicable to nonlinear and high-
dimensional problems

CONTROL VARIABLE UPDATE

|
L/

NEW DA CYCLE
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MLEF algorithm _EIRA
i . g

Forecast: Evolve uncertainty in time with nonlinear dynamical model m

x! = m(x*) X =m(x +p)

pl =m(x* + p/)—m(x*)

Analysis: Minimize arbitrary nonlinear cost function

f(x)= %(x—xf)T Pf_1 (x—xf)+%(y— h(x))T R (y— h(x))

Xy = X+ d,

Analysis error covariance estimated from the inverse Hessian at the minimum

(J Reduced rank for high-dimensional state
O Full-rank for low-dimensional state
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Modular-algorithm—

L User-friendly compilation and experiment specifications

d MPI - optional
O Fortran 90/95 - based

MLEF

Post-processing

Minimization algorithms
Forecast scheduler
Observation scheduler

Model interface Observation interface

Prediction model

Observation operator(s)
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NASA Global Precipitation |V|ISSIOn
/Qwuaﬁcalmg satellite precipi

~ using ensemble data assimilation

(NASA GPM: Downscaling satellite precipitation information using ensemble
data assimilation

JAssimilate precipitation-affected microwave satellite radiances (TMI, AMSU-
A/B, AMSR-E, MHS) and NOAA operational observations

(JCloud-scale data assimilation with NASA WRF model (27-9-3 km) and
GSI/SDSU observation operator (S. Zhang et al. 2013, MWR)

Surface precipitation short-term forecasts verification
(accumulated during 15-22 Sep 2009 in the southeast US flood region)

Ground-based Verification 3DVAR, no AMSR-E, TMI MLEF, with AMSR-E, TMI
(NOAA Stage |V data) (WRF-GSI) (WRF-EDAS)
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All-sky MSG SEVIRI (infrared) ~ GIRA
~ assimilation: Hurricane Fred (2009)

(1 JCSDA and NOAA GOES-R: Assimilation of all-sky infrared satellite
radiances in hurricane core area

(d NOAA hurricane WRF (HWRF) model (2011) (inner nest at 9 km) and
GSI/CRTM

[ 1-hour assimilation interval

Analysis of clouds (e.g., cloud condensate)
(hurricane Fred (2009), M. Zhang et al. 2013)

Cloud condensate: Cloud condensate: Verification: AMSU-A NOAA-16
Clear-sky All-sky retrieved cloud liquid water
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Coupled DA: Uncertaintyand _ €IRA

nformation

« Two-component coupled system with variables X, and X,

Mutual information Shannon Entropy

I(X,,X,)=H(X,)+H(X,)- H(X,,X,) H{X} T —Jp(x)log[p(x)]dx

IEE X J=itx X ElE X))

Q Interpretation: There are fewer degrees of freedom in a coupled system
than in the sum of separate systems

O This improves the capability of ensemble coupled DA — since fewer
ensembles are needed
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2-point DA coupled atmosphere-land system
wiThs/ingIe-point atmospheric observation

Forecast error covariance
Atmosphere-Land

2 .
(Gf )atm patm Jand correlation patm Jand

2
p atm land (G f )land

"

De-coupled analysis solution £, /ua =0

2
A 1 f gatm y
arm 2 arm 2 arm 2
1 i gatm 1 i 8atm ) (Gf )atm
atm % )
% ¥ (GR )atm
xland = xland '

Weak coupling: Coupled forecast, de-coupled DA

@l RA - Atmospheric observation cannot improve land analysis (IC)
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2-point DA coupled atmosphere-land system
wiThs/ingIe-point atmospheric observation

Forecast error covariance
Atmosphere-Land

2 .
(Gf )atm patm Jand correlation patm Jand

f 2
p atm land (G f )land
Coupled analysis solution D2l
2
o 1 Rt y
arm 2 arm 2 arm 2
1+€atm 1+8atm D (Gf)atm
atm ~ >
a f 1 p atm Jland f (GR )atm
xland = xland (y atm 'xatm)

2 2
1 s gatm (GR )atm

- Strong coupling: Coupled forecast, coupled DA
l RA - Atmospheric observation can improve land analysis (IC)
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Atmosphere-land coupled data /Q}RA
-assimilation: WRF-NOAH model

O NASA MAP: Improve impact of cloud and precipitation estimation on land surface
O NASA Atmosphere-land-chemistry coupled model (NASA-Unified WRF — 9km)

O Evaluate ensemble cross-variable error covariance

O Analysis response to single pseudo-observation of cloud rain water at 700 hPa

Rain Sp_ec_i»ﬁc_ hL'erid’ity
A
Q
E ‘
2 A \
o \
= Jj X
o l A\
i\

Soil moisture

Vi

land

Coupled model history contained in forecast error covariance
=» instant benefit for DA
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New development: Addressing

L

—

msufficient rank of forecast error covariance

< Atypical remedy is hybrid variational-ensemble data assimilation: combine
ensemble and variational error covariances Py = f(Paoys>Pyar)

Hybrid VAR-ENS DA

Ensemble DA system

ENS
uncertainty

$

o A

v

VAR
optimal state

Variational DA system

One-way interaction due to:
- Separate VAR and ENS DA systems
- Sub-optimal Hessian preconditioning

New MLEF

A A

ENS+VAR Single
uncertainty optimal state

YV

Two-way interaction:
- Single DA system
- Optimal Hessian preconditioning
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General spatiotemporalapproach: /ﬁ}RA
“A-dim

—

imensional MLEF algorithm

n - dimensional control variable and uncertainty
- Allow simultaneous adjustment in time and space
- Increased dimension of state vector
- Error covariance can include temporal component
- Error covariance localization is n-dimensional

Formal extension of multivariate pdf to all spatial and temporal
components

- For Gaussian assumption define 4-dimensional cost function
1 VRN 1 A
f(u)= E(u—uf) Pfl(u—uf)+5(y—h(u)) R 1(y—h(u))

O=er ) Pf = Pf(x,y,z,t)
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Summaty — — @m

* Operational DA implementation requires simple and efficient codes

* Development of variational and ensemble methods is combined in
hybrid variational-ensemble methodology

* Potential value of coupled DA

°* New DA methodologies are already available for pre-operational testing

* Important to maintain generality of DA algorithm: potential for
collaboration with other groups working with different models and

observations

* Modular code provides adaptive framework

- adding new model and observations only requires new DA interfaces with
model and observations
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Thank you !

Further information at http://www.cira.colostate.edu/ensemble/
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