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Integrated urban flood model (DPRI, Kyoto Univ.)

- 2-D inundation model on the ground surface 

- 1-D network model of sewer pipes

- Combined by a sub-model to exchange storm water between 

the ground surface and the sewerage system 
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h : water depth

H : water elevation

u : x-direction water velocity

v   : y-direction water velocity

M : uh(x-direction flux)

N  : vh(y-direction flux)

re : effective rainfall

qdrain : unit area drainage discharge between ground and drain box

qsew : unit area drainage discharge between ground and sewer pipe

g : acceleration of gravity

n : Manning’s roughness coefficient
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 drain box

A : box bottom area

Q : discharge

qdrain : unit area drainage discharge between ground and drain box

 FDM & leap-frog methods are adopted
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 Governing equations (sewer pipe)
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Fig.  Hydraulic characteristic curves of the circular sewer pipe
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① Inlet

Cdo：orifice coefficient (0.57)
Cdw ：weir coefficient (0.48)
Q：discharge
hhd：piezometric head of drain channel
hmd：piezometric head of sewer pipe 
A：area of bottom hole 
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- Also known as sequential Monte Carlo (SMC)

- Applicable for non-linear, non-Gaussian state-space models (most of hydraulic and 

hydrologic models)

- Point mass (“particle”) representations of probability densities with associated 

weights

- Expensive computation but easy for parallelization

- Wide-spread applications including image processing, target tracking, and flood 

forecasting

- Noh, S. J., Rakovec, O., Weerts, A. H., and Tachikawa, Y.:  On noise specification in data assimilation schemes 

for improved flood forecasting using distributed hydrological models. J. Hydrol. in press, 2014.

Particle filtering 
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kk-1Time
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Observation

Weighting Resampling

Prediction Analysis

Propagate state

SIR particle filter
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Node : 60,411
Mesh : 117,435
Link : 177,843

Urban surface Sewer pipe network
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Deterministic modeling case
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• Water level and discharge at pumping station no. 3 were used as 

synthetic observation 

• Spatial distribution of rainfall was not considered

Synthetic observation



13

Without particle filtering With particle filtering
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Inundation area - without particle filtering
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Inundation area - with particle filtering
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H-Q 

relationship
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W.L.

W.L. and Q

Setup of 2-D dynamic 
wave model 
(observed data and Aerial photo)

Noise specification
(inflow and roughness)

+
Particle filtering 

using observed H

Updating ensembles 
using observed W.L.

Likelihood

Particle filters

Updated W.L.

Flood routing using a hydraulic model

Upstream Q Lateral Q Downstream W.L.
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– The Katsura river 
located in Kyoto, 
Japan

– Tenryuji station ~ 
Hazukshi station 

– (total length: about 
12.8km)

天竜寺

羽束師

桂

Tenryuji

Katsura

Hazukashi
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• Classification of Manning’s n

Flood plain

Main channel

Vegetated area

Flood plain(0.03~0.07)

Main channel(0.02~0.04)

Vegetated area(0.03~0.07)

Initial range of n for simulation
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• Estimated and observed H at Tenryuji station

• Estimated and observed Q at Tenryuji station

2004 2011 2013

2004 2011 2013

http://www.sameshow.com/powerpoint-to-flash.php?sid=4
http://www.sameshow.com/powerpoint-to-flash.php?sid=4
http://www.sameshow.com/powerpoint-to-flash.php?sid=4
http://www.sameshow.com/powerpoint-to-flash.php?sid=4
http://www.sameshow.com/powerpoint-to-flash.php?sid=4
http://www.sameshow.com/powerpoint-to-flash.php?sid=4
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• Applicability of particle filtering for two
hydraulic models were evaluated.

• PF is sound when momentum equilibrium
is important in the prediction models

• Assimilation-based estimation using 2-D
model and PF could provide reliable H-Q
relationships for poorly-gauged or
ungauged basins
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• PF and dimensionality
• Different ensembles are required for

estimation of states and parameters
• Hybrid DA to reduce dimensionality

• PF-MLEF, PF-EnKF, …

• Real-time applications
• Parallel computing for ensembles
• Parallel computing within a ensemble

• More attention is needed to improve DA
to consider both covariance and dynamics
of the system



Thank you for your attention!
seongjin.noh@gmail.com
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• Estimated Manning’s n at main channel

• Estimated lateral inflow from Tenryuji to Katsura station

2004 2011 2013

2004 2011 2013

http://www.sameshow.com/powerpoint-to-flash.php?sid=4
http://www.sameshow.com/powerpoint-to-flash.php?sid=4
http://www.sameshow.com/powerpoint-to-flash.php?sid=4
http://www.sameshow.com/powerpoint-to-flash.php?sid=4
http://www.sameshow.com/powerpoint-to-flash.php?sid=4
http://www.sameshow.com/powerpoint-to-flash.php?sid=4
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파티클 필터 적용 시

Real-time monitoring system of 
sewer water level in Seoul, Korea
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AmAm

pp ghAQ 235.0 

)(291.0 mpm hhgAQ 

• In the case of  (hp >= hm) 

If, (hm / hp > 2/3) 

If, (hm / hp <= 2/3) 

 Manhole and sewer pipe

mm ghAQ 235.0 

)(291.0 pmp hhgAQ 

• In the case of  (hm >= hp) 

If,  (hp / hm > 2/3)

If , (hp / hm <= 2/3)

Fig. Concept of virtual area of manhole

zm : elevation of manhole
hm : water depth of manhole
vm : velocity of manhole
g : gravity acceleration

zp : elevation of pipe
hcp : critical depth of pipe
vp : critical velocity of pipe
hp : critical depth of pipe + velocity 
head

Am : calculated by hm

Ap : calculated by hcp

<manhole>

Connection models
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- Urban inundation due to heavy rainfall and climate change is an inevitable

problem for many cities around the world and constitutes a severe threat

to residential life, property and infrastructure(Mark et al., 2004)

- Therefore, it is important to accurately simulate urban hydrological

processes and efficiently predict the potential risks of urban floods (Lee et

al., 2009)

- However, it is insufficient to obtain accurate predictions due to various

uncertainties coming from input forcing data, model parameters, and

observations.


