Challenges and Limitations of Hydroclimatological Forecasting and the Relative Role of its Three Pillars: Models, Observations and Parameterization

Soroosh Sorooshian

Center for Hydrometeorology and Remote Sensing - University of California Irvine

CAHMDA/DAFOH Workshop Center for Integrated Earth System Science UT Austin– Texas : Sept. 8th -12th 2014

(HRS) i Repseitychf Teahif Ameisen ItroindeR (I Cent) Past

and many more ...

Climate, Hydrology and Water Resources

• How will Climate effect water Availability?

 Can we predict the future changes which are responsive to "user" needs?

Climate Model Downscaling to regional/watershed Scale

Ensemble Approach

Generation of Future Precipitation Scenarios

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Downscaled Precipitation to Runoff Generation

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Brief Review of Rainfall Runoff modeling:

Progress in Hydrologic Modeling

Hydrologic Modeling: 3 Elements!

Model Selection

Hydrologic Modeling Challenges

Continental Scale: Focus of Hydro-Climate modelers

> Different Scales Different Issues Different Stakeholders

<u>Watershed Scale</u>: Focus of Hydro-Met. Modeling Where hydrology happens

Evolution of Hydrologic R-R Models

Center for Hydrometeorology and Remote

Physically-based

Hydrologic Modeling: "Lumped"

"Semi-distributed" Hydrologic Models

"Semi-distributed" Hydrologic Models

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Example of Distributed Model Appl. in large Basins

Example of Distributed Hydrologic Model

DMIP-1 Findings: In a Nutshell

No Major Difference between the performance of Lumped and distributed models

Model Calibration/ Parameter Estimation

The Identification Problem

- 1. Select a model structure (Input-State-Output equations)
- 2. Estimate values for the parameters

"Automatic" Calibration components

Objective Function Search Algorithm Sensitivity Analysis

Parameter Uncertainty Methods

(1) First-order approximations near global optimum (Kuczera etal)

Limitations

- Assumes Model is Linear
- Assumes Posterior Dist. Guassian

(2) Generalized Likelihood Uncertainty Estimation (GLUE) $^{\Theta_1}$ method (Beven and co-workers)

(3) Markov Chain Monte Carlo (MCMC) methods θ_1 (Vrugt and others) $p(\theta^{t+1}|)$

Multi-Objective Approaches

AGU Monograph – Now Available

Water Science and Application 6

Calibration of Watershed Models presents a state-of-the-art analysis of mathematical methods used in the identification of models for hydrologic forecasting, design, and water resources management. From reviewing advances in calibration methodologies, to describing automated and interactive strategies for parameter estimation, uncertainty analysis, and probabilistic prediction, this book addresses five questions essential to the discipline:

- What constitutes best estimates for watershed model parameters?
- What computational procedures ensure proper model calibration and meaningful evaluation of performance?
- How are calibration methods developed and applied to watershed models?
- What calibration data are needed for reliable parameter values?
- How can watershed modelers best estimate model parameters and assess related uncertainties?

For scientists, researchers and students of watershed hydrology, practicing hydrologists, civil and environmental engineers, and water resource managers.

www.agu.org

Calibration of Watershed Models

> Qingyun Duan Hoshin V. Gupta Soroosh Sorooshian Alain N. Rousseau **Richard Turcotte** Editors

Big Challenge

Adequacy of Hydrologic Observations for model Input, Calibration and Testing

Among the 3 Pillars

A Key Requirement!

Precipitation Measurement is one of the <u>KEY</u>

hydrometeorologic Challenges

Push towards High Resolution (Spatial and Temporal) Global Observations and Modeling

Radar-Gauge Comparison (Walnut Gulch, AZ)

Uncertainty in Runoff Simulation due to Rainfall Variability

Modeled runoff (KINEROS)

Small scale spatial variability of rainfall (on

the order of ~150 m)

Lucky Hills - 104 Small-Scale Experimental Network

Future Modeling Scenarios (2006-2099)

Western U.S. future model projections

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Dr. Chiyuan Miao - BNU

Future Modeling Scenarios – IPCC AR5

Representative Concentration Pathways (RCP) Scenarios:

RCP2.6: represent 'low' scenarios featured by the radiative forcing of 2.6 W/m² by 2100, the resulting CO₂-equivalent concentrations is 421 ppm in the year 2100.

RCP4.5: represent 'medium' scenarios featured by the radiative forcing of 4.5 W/m² by 2100, the resulting CO₂-equivalent concentrations is 538 ppm in the year 2100.

RCP8.5: represent 'high' scenarios featured by the radiative forcing of 8.5 W/m² by 2100, the resulting CO₂-equivalent concentrations is 936 ppm in the year 2100.

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

RCP2.6

Time period: 2006-2099

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

RCP8.5

Time period: 2006-2099

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

<u>Precipitation Estimation from Remotely Sensed Information</u> <u>using Artificial Neural Networks (PERSIANN)</u>

PERSIANN System

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks

Kuolin Hsu Algorithm Development

Bisher Imam G-WADI site development

PERSIANN-CCS (Real-time 4 km)

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Reconstruction of 30+ years of Daily, 0.25°

Satellite-Based Precipitation observation

Ashouri et al., BAMS 2014 (to appear)

Center for Hydrometeorology and Remote Sensing (CHRS)
PERSIANN-

http://www.ncdc.noa

Home Operational CDRs

CLIMATE DATA RE

- > Serving the Public
- > Data
- > Development Guidelines
- > Contact Us

News

<u>Climate Data and Applications</u> <u>Workshop - A Focus on</u> <u>Precipitation - Dec 3-4, 2013</u>

Congratulations Cheng-Zhi Zou

2013 CDR Annual Meetings Presentations now available

NOAA'S NATIONAL CLIMATIC DATA CENTER

NOAA's Climate Data Record (CDR) Program

PRECIPITATION ESTIMATION FROM REMOTE SENSING INFORMATION USING ARTIFICIAL NEURAL NETWORK

PERSIANN-CDR

PERSIANN CLIMATE DATA RECORD SPECIFICATIONS

- 0.25-deg * 0.25-deg (60°S-60°N latitude and 0°-360° longitude)
- Daily Product
- 1980-present
 Updated Quarterly
- A State of the second s
- INPUTS TO THE PERSIANN CLIMATE DATA RECORD
- GridSat-B1 CDR (IRWIN)
- GPCP 2.5-deg Monthly Data

Some Uses of the PERSIANN CLIMATE DATA RECORD

- Climatologists can perform long-term climate studies at a finer resolution than previously possible.
- Hydrologists can use PERSIANN-CDR for rainfall-runoff modeling in regional and global scale, particularly in remote regions.
- Performing extreme Event Analysis (intensity,
- frequencies, and duration of floods and droughts). • Water Resources Systems Planning and Management

PERSIANN CLIMATE DATA RECORD http://www.ncdc.noaa.gov/cdr/operationalcdrs.html

CLIMATE DATA RECORD PROGRAM INFORMATION http://www.ncdc.noaa.gov/cdr/index.html

ord

vironmental Satellites: Interim 1. The first step in establishing taset itself, and supporting <u>rs Guidelines</u>.

ospheric, Oceanic, and tures) that have been improved are geophysical variables cific to various disciplines. It

Documentation

<u>Algorithm Description</u> <u>Data Flow Diagram</u> <u>Maturity Matrix</u>

<u>Algorithm Description</u> <u>Data Flow Diagram</u> <u>Maturity Matrix</u>

<u>Algorithm Description</u> <u>Data Flow Diagram</u> <u>Maturity Matrix</u>

Algorithm Description Data Flow Diagram Maturity Matrix

<u>Algorithm Description</u> <u>Data Flow Diagram</u> <u>Maturity Matrix</u>

Protecting the past ... Revealing the future

LEO Satellites for Precipitation Estimation

Thickest lines denote GPCP calibrator.

Image by Eric Nelkin (SSAI), 20 October 2010, NASA/Goddard Space Flight Center, Greenbelt, MD.

Historical GEO Satellite Data

• International Satellite Cloud Climatology Project (ISCCP) 1979 to present 10-km and 3-hour intervals

1. U.S. Geostationary Operational Environmental Satellite (GOES)

2. European Meteorological satellite (Meteosat) series

3. Japanese Geostationary Meteorological Satellite (GMS)

4. The Chinese Fen-yung 2C (FY2) series.

Source: NOAA NCDC

PERSIANN-CDR Algorithm

Testing of PERSIANN-CDR: Hurricane Katrina, 2005

Rainfall (mm/day) over land during Hurricane Katrina on 29 August 2005 from PERSIANN-CDR (top row left), Stage IV Radar (top row middle, Lin and Mitchell 2005), and TMPA v7 (top row right, Huffman *et al.* 2007). Black and gray pixels show radar blockages and zero precipitation, respectively. Scatter plots of PERSIANN-CDR and TMPA versus Stage IV Radar data are provided in the bottom row.

Validation of PERSIANN-CDR: Australia Flood Event

Testing of PERSIANN-CDR: Number of Rainy days >= 10 mm/day

Center Hydrenter for Hydranaten alogy and Remate Sensing, University of California, Irvine

PERSIANN-CDR Evaluation over China

Dr. Chiyuan Miao - BNU

Gauge data: daily precipitation over East Asia (EA) (Xie et al., 2007)

- More than 2200 ground-based stations across China

 -0.5° resolution

– Period 1983-2006

PERSIANN-CDR: up scaled into the same resolution as $EA(0.5^{\circ})$

ID	Definition	Unit
RR95p	The 95th percentile of annual precipitation on wet days (precipitation ≥ 1 mm)	mm/day
R10mmTOT	Annual total precipitation when daily precipitation ≥ 10 mm	mm
R10mm	Annual count of days when precipitation ≥10mm	Days

Extreme precipitation indices used in the analysis

Results: Entire China

Prob. density functions (PDF) of Relative Errors for the Extreme Precipitation Indices: Different Gauge Densities.

PERSIANN-CDR Evaluation: Zooming over the Yellow River Region

PERSIANN-CDR Evaluation: Zooming over the Yellow River Region

The probability density function (PDF) of the relative error for different gauge density

Potential Factors Influencing Agreement Between Gauge Data and PERSIANN-CDR

- Insufficient gauge density most likely leads to Spatial errors: Particularly over the Western and Northwestern Arid Regions.
- The influence of topography on Spatial distribution of precipitation not fully captured by the interpolation process from points to grids.

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Devils are in details ...

How about the testing of all other Remote Sensing Observations and Model Generated Data?

"Observed" vs "Model-Generated" Data

MODIS

MM5R

GLDAS/Noah

Sorooshian et al. 2011 & 2012

Actual ET Estimates From Different Data sets- JJA 2007

2007 JJA Monthly ET (mm)

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Li et al, 2011

Actual ET comparison-spatial distribution – JJA 2007

Monthly ET (mm/month)

An Important Dilemma for the modeling application community will be: Which Remotely Sensed ET Product should be used for model testing and validation??

What is the Message?

• Despite advances to date, predicting the future Hydro-Climate variables will remain a major challenge:

• Nature is complex and observing and modeling its nonlinear behavior is very challenging. So, "have a will to doubt" the credibility of information "generated" by models.

• Long-term and sustained observation programs are critical, especially for model verification. Without some degree of verifiability, hard to expect their use

Tibet: Confluence of Lhasa-Tsangpo Rivers August 23rd 2014

Back up slides

Center for Hydrometeorology and Remote Sensing (CHRS)

Model historical simulation (1983-2005)

Global Drought Monitoring

Monitoring global "abnormal" wetness and dryness conditions using Standard Precipitation Index (SPI) method from GPCP 2.5-deg monthly (top) and PERSIANN-CDR 0.25-deg daily (bottom) for the period of 1983-2012. NOTICE the difference in spatial resolution

GPCP 2.5-deg monthly

PERSIANN-CDR 0.25-deg daily

H. Ashouri

Center for Hydrometeorology and Remote Sensing (CHKS)

Precipitation Observations: Which to trust??

Rain Gauges

TRANSMIT Horizontal Pulse

(B)

Number of range gauges per grid box. These boxes are 2x2 degrees (Source: Global Precipitation Climatology Project)

Coverage of the WSR-88D and gauge networks

Maddox, et al., 2002

Daily precipitation gages (1 station per 600 km² for Colorado River basin) hourly coverage even more sparse

Western U.S. historical model simulations

Model historical simulation vs observation

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Model historical simulation

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Space-Based Observations

Satellite Data for Precipitation estimation

Problems with IR only algorithm

Assumption: higher cloud \rightarrow colder \rightarrow more precipitation

Current Microwave Satellite Configurations

PERSIANN Satellite Product On Google Earth

Spatial-Temporal Property of Reference Error

US Daily Precipitation Validation Page

http://www.cpc.ncep.noaa.gov/products/janowiak/us_web.html

	Number of points: # points w/rain: Mean rain rate:	(G) gauge 13828. 4249. 5.55	PERSIANN 13828. 4665. 4.25	(R) radar 13828, 2971, 3,13
	Cond. rain rate:	17.82	12.47	14.46
	Max. rain rate:	181.99	79.07	131.45
	Correlation: Mean Absolute Error: RMSE (mm/day): RMSE (normalized): Probability of Detection False Alarm Ratlo: Bias Ratio (rain:no rain Heidke Skill Score: Hanssen-Kuipers Score	G-S 0.827 3.63 9.44 1.70 : 0.746 0.321 1): 1.098 0.574 : 0.589	G-R 0.726 3.42 11.23 2.02 0.654 0.665 0.699 0.692 0.634	R—S 0.606 3.35 8.66 2.77 0.855 0.455 1.570 0.546 0.546
	Equitable Threat Score:	0.402	0.528	0.376
TETEL LAND				

13Z 19Sep2003 thru 12Z 19Sep2003 Data on 0.25 deg grid (UNITS are mm/day)

425 36N

365

30N

24N

21N

131

12f1 27N

3018N

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

PERSIANN-CDR: PERSIANN Climate Data Record (30-yr, Daily, 25 Km)

http://www.ncdc.noaa.gov/cdr/operationalcdrs.html

>

> SEARCH

Environmental Satellites: Interim ted. The first step in establishing dataset itself, and supporting pers Guidelines.

tmospheric, Oceanic, and ratures) that have been improved Rs are geophysical variables pecific to various disciplines. tput.

Documentation

Algorithm Description Data Flow Diagram **Maturity Matrix**

ce

Algorithm Description Data Flow Diagram Maturity Matrix

Algorithm Description Data Flow Diagram **Maturity Matrix**

Algorithm Description Data Flow Diagram Maturity Matrix

Algorithm Description Data Flow Diagram **Maturity Matrix**

GPM Mission: Target Launch Feb. 2014

OBJECTIVES

- 1 Main satellite + 8 Smaller Satellites \
- Provide sufficient global sampling to significantly reduce uncertainties in short-term rainfall accumulations

Future looks bright and will bring more advances for precipitation Estimation

GPM Animation

Hydrologically - Relevant Remote Sensing Missions

SMOS ESA's Soil Moisture and Ocean Salinity (2009)

SMAP Soil Moisture Active Passive Satellite(2014)

TRMM The Tropical Rainfall Measuring Mission

GPM Global Precipitation Measurements (2014)

SWOT Surface Water and Ocean Topography (2020)

GRACE Gravity Recovery and Climate Experiment (2002)

MODIS Moderate Resolution Imaging Spectroradiometer (1999), (2002)