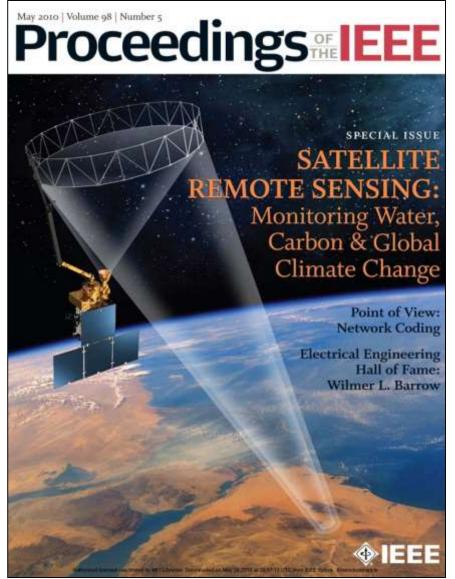


Soil Moisture Active Passive Mission SMAP

N. Das (JPL) D. Entekhabi (MIT) Eni Njoku (JPL) S. Yueh (JPL) Global High Resolution Soil Moisture Product from the Soil Moisture Active Passive (SMAP) Mission and its Applications

09-11-2014


- Measurements Approach Reminder
- Mission Status
- The Active-Passive Surface Soil Moisture Product
 - Technical Approach
 - Testing Results
 - Error Analysis
- SMAP Applications
- SMAP Data Assimilation Potential (example)
- The SMAP Handbook
- Summary

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

SMAP Mission Concept

SMAP will provide high-resolution and frequent-revisit global observations of soil moisture and freeze/thaw state

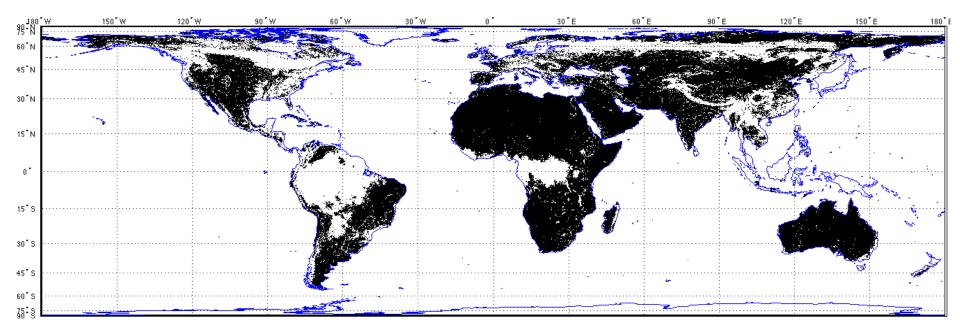
- L-band unfocused SAR and radiometer system, offset-fed 6 m light-weight deployable mesh reflector. Shared feed for
 - 1.26 GHz dual-pol <u>Radar</u> VV, HH and HV at 1-3 km (30% nadir gap)
 - 1.4 GHz polarimetric (H, V, 3rd and 4th Stokes) <u>Radiometer</u> at 40 km (3 dB)
- Conical scan, fixed incidence angle across swath
- Contiguous 1000 km swath with 2-3 days revisit (8 days exact repeat)
- Sun-synchronous 6am/6pm orbit (680 km)
- Launch November 5, 2014

Science Objectives & Requirements Are Stable

Decadal Survey Objective	Application	Science Requirement	
Weather Forecast	Initialization of Numerical Weather Prediction (NWP)	Hydrometeorology	
Climate Prediction	Boundary and Initial Conditions for Seasonal Climate Prediction Models	- Hydroclimatology	
	Testing Land Surface Models in General Circulation Models	Tydrociimatology	
Drought and Agriculture Monitoring	Seasonal Precipitation Prediction		
	Regional Drought Monitoring	Hydroclimatology	
	Crop Outlook		
Flood Forecast Improvements	River Forecast Model Initialization	Hydrometeorology	
	Flash Flood Guidance (FFG)		
	NWP Initialization for Precipitation Forecast		
Human Health	Seasonal Heat Stress Outlook	Hydroclimatology	
	Near-Term Air Temperature and Heat Stress Forecast	Hydrometeorology	
	Disease Vector Seasonal Outlook	Hydroclimatology	
	Disease Vector Near-Term Forecast (NWP)	Hydrometeorology	
Boreal Carbon	Freeze/Thaw Date	Freeze/Thaw State	

Key Level 1 Requirements (Derived from science objectives)

		Ludro		Baseline Mission		Minimum Mission	
Requirement	Hydro-Meteorology	Hydro- Climatology	Carbon Cycle	Soil Moisture	Freeze/	Soil	Freeze/
					Thaw	Moisture	Thaw
Resolution	4–15 km	50–100 km	1–10 km	10 km	3 km	10 km	10 km
Refresh Rate	2–3 days	3–4 days	2–3 days ^(a)	3 days	2 days	3 days	3 days
Accuracy	0.04-0.06 ^(c)	0.04-0.06	80-70% ^(b)	0.04	80%	0.06	70%

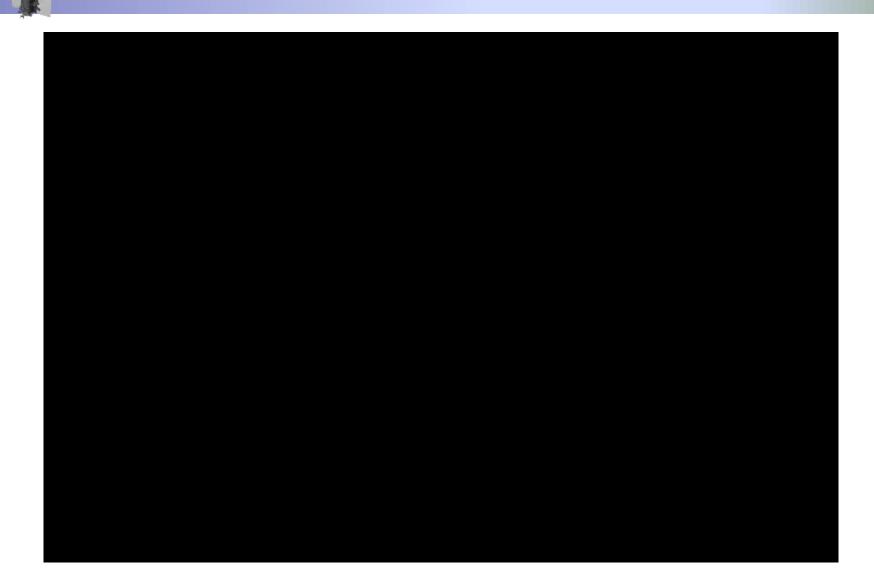

^(a) North of 45N latitude

^(b) Percent classification accuracy (binary freeze/thaw)

 $^{(c)}$ Volumetric water content, 1- σ in [cm³/cm³] units

<u>At 9 km</u>: VWC \leq 5 kg m⁻² Urban Fraction \leq 0.25 Water fraction \leq 0.1 Elevation Slope Standard Deviation \leq 3 deg

May 2014: Instrument and Spacecraft Integration



SMAP Science Products

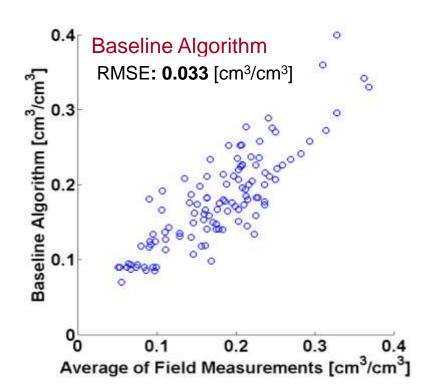
A					
Product	Description	Gridding (Resolution)	Latency**		
L1A_Radiometer	Radiometer Data in Time-Order	-	12 hrs		
L1A_Radar	Radar Data in Time-Order	-	12 hrs		
L1B_TB	Radiometer T_B in Time-Order	(36x47 km)	12 hrs		
L1B_S0_LoRes	Low Resolution Radar σ_o in Time-Order	(5x30 km)	12 hrs	Instrument Data	
L1C_S0_HiRes	High Resolution Radar σ_{o} in Half-Orbits	1 km (1-3 km)	12 hrs		
L1C_TB	Radiometer T_B in Half-Orbits	36 km	12 hrs		
L2_SM_A	Soil Moisture (Radar)	3 km	24 hrs		
L2_SM_P	Soil Moisture (Radiometer)	36 km	24 hrs	Science Data	
L2_SM_AP	Soil Moisture (Radar + Radiometer)	9 km	24 hrs	(Half-Orbit)	
L3_FT_A	Freeze/Thaw State (Radar)	3 km	50 hrs		
L3_SM_A	Soil Moisture (Radar)	3 km	50 hrs	Science Data	
L3_SM_P	Soil Moisture (Radiometer)	36 km	50 hrs	(Daily Composite)	
L3_SM_AP	Soil Moisture (Radar + Radiometer)	9 km	50 hrs		
L4_SM	Soil Moisture (Surface and Root Zone)	9 km	7 days	Science Value-Added	
L4_C	Carbon Net Ecosystem Exchange (NEE)	9 km	14 days		

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

L-band Active/Passive Approach

 Soil moisture retrieval algorithms are derived from a long heritage of microwave modeling and field experiments

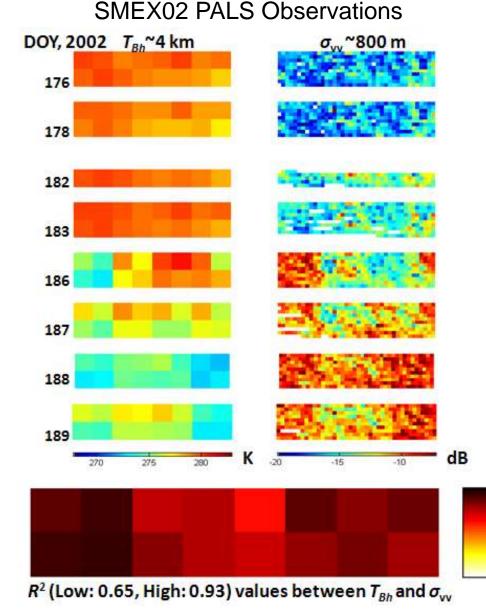

> MacHydro' 90, Monsoon' 91, Washita92, Washita94, SGP97, SGP99, SMEX02, SMEX03, SMEX04, SMEX05, CLASIC, SMAPVEX08, CanEx10, SMAPVEX12

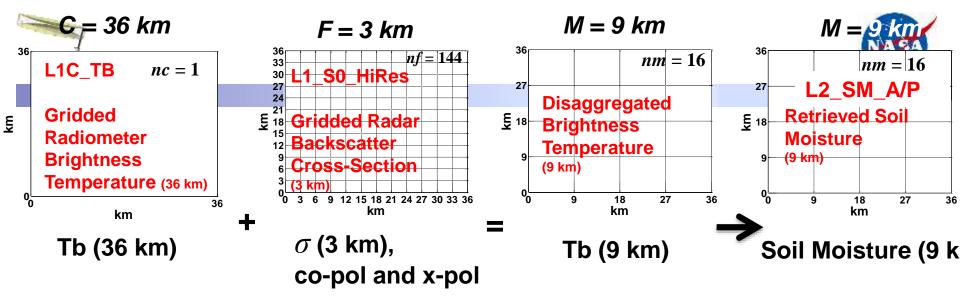
- Radiometer High accuracy (less influenced by roughness and vegetation) but coarser spatial resolution (40 km)
- Radar High spatial resolution (1-3 km) but more sensitive to surface roughness and vegetation
 - Combined Radar-Radiometer product provides intermediate 9km resolution with 0.04 [cm³ cm⁻³] 1-σ accuracy to meet science objectives

SMEX02 Study Region With PALS Airborne and *in situ* Ground-Truth

SMAP Baseline Active-Passive Algorithm

Active Passive Algorithm Fundamentals




0.5

Start with the basic premise that <u>temporal</u> variations in σ_{pp} are also reflected in variations in $T_{B_{p:}}$

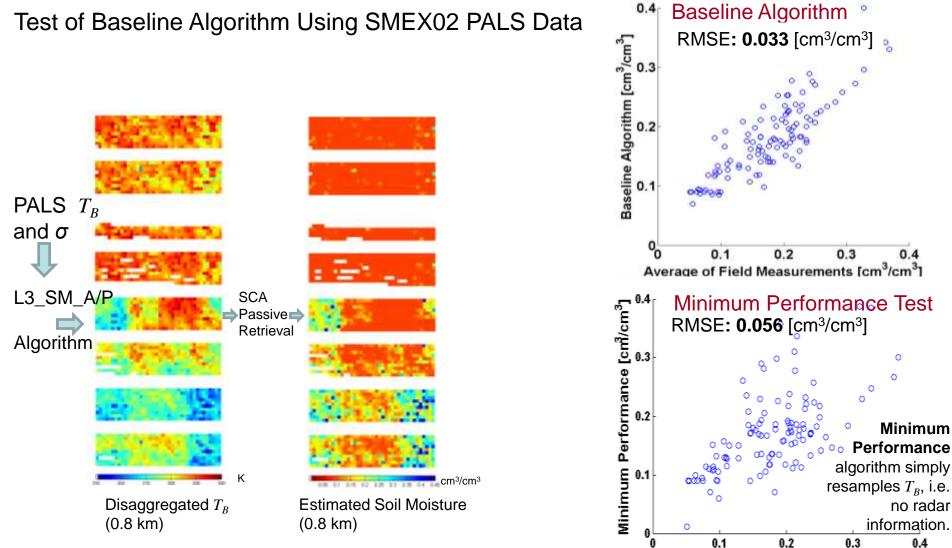
$$T_{B_p} = \alpha + \beta \cdot \sigma_{pp}$$

Parameter β [K dB⁻¹] is a sensitivity parameter.

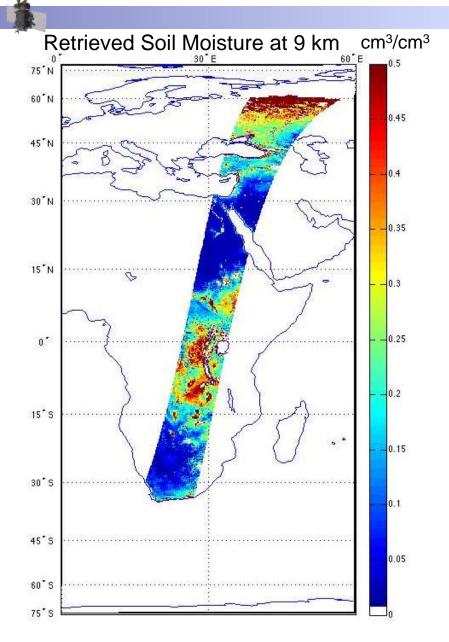
SMAP Active-Passive Algorithm

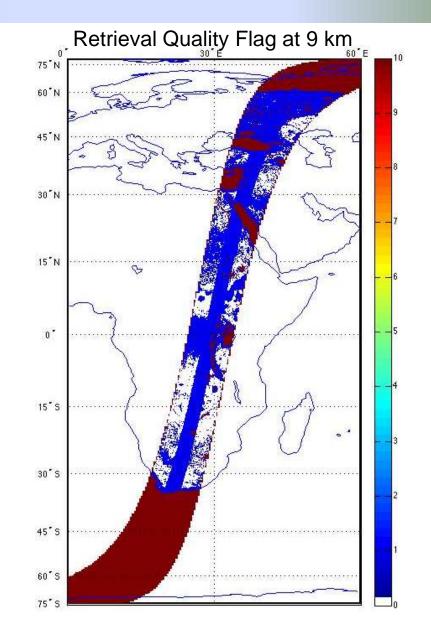
$$T_{B_{p}}(M) = T_{B_{p}}(C) + b(C) \times \{ [S_{pp}(M) - S_{pp}(C)] - G(C) \times [S_{pq}(M) - S_{pq}(C)] \}$$

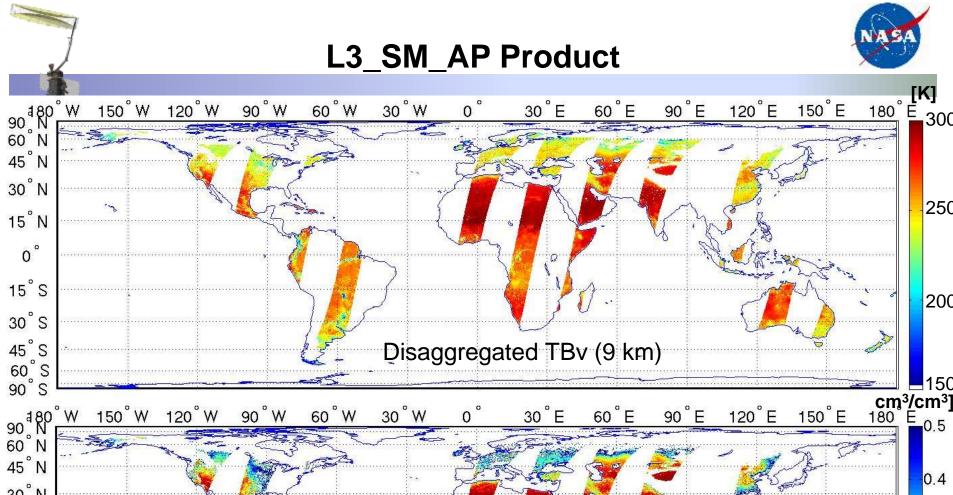
 $T_{B_{p}}(M) = Disaggregated brightness temperature$ $T_{B_{p}}(C) + Parent scale-C brightness temperature$ $b(C) \times \{ \& S_{pp}(M) - S_{pp}(C) \& + S_{pp}(C) \& + S_{pp}(D) \& S_{pp}(D) \&$



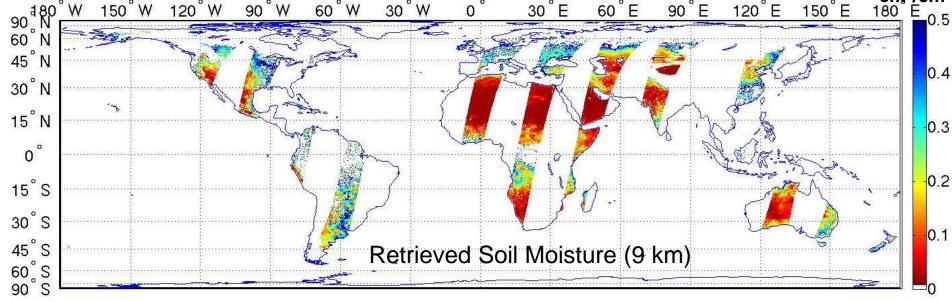
End-to-End Prelaunch Testing of Algorithm Performance


0.4

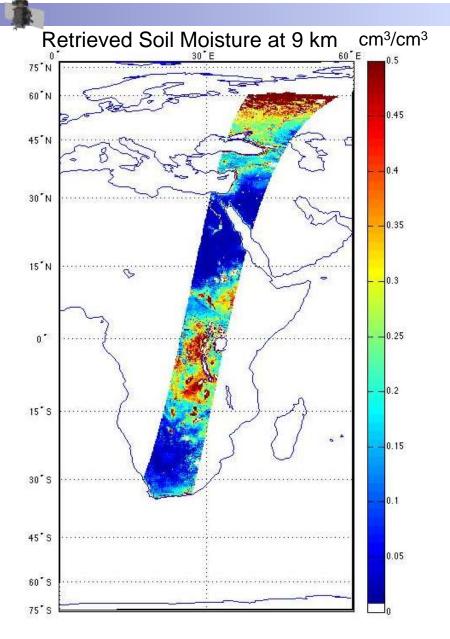

Average of Field Measurements [cm³/cm³]

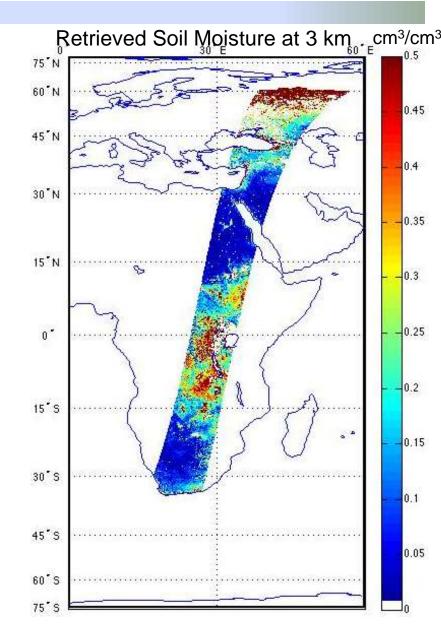


L2_SM_AP Product

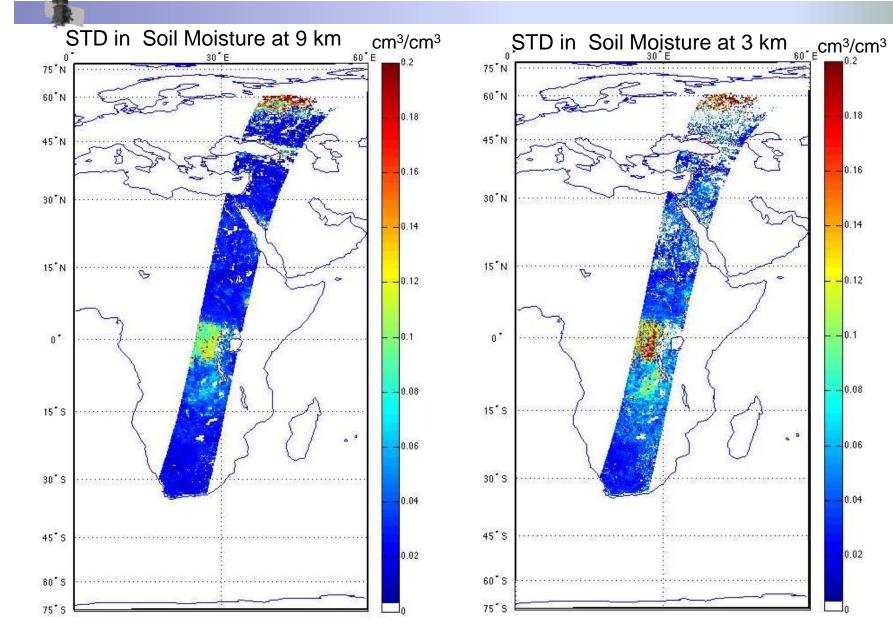


0°


45[°]


S

L2_SM_AP Calibration and Validation Using Simulated Data

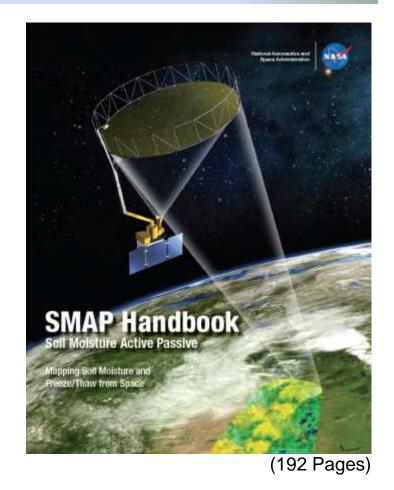


L2_SM_AP Calibration and Validation Using Simulated Data

A primary goal of the NASA SMAP Mission is to engage SMAP end users and build broad support for SMAP applications through a transparent and inclusive process.

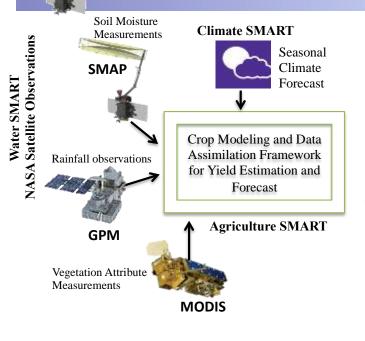
Toward that goal, the SMAP Mission:

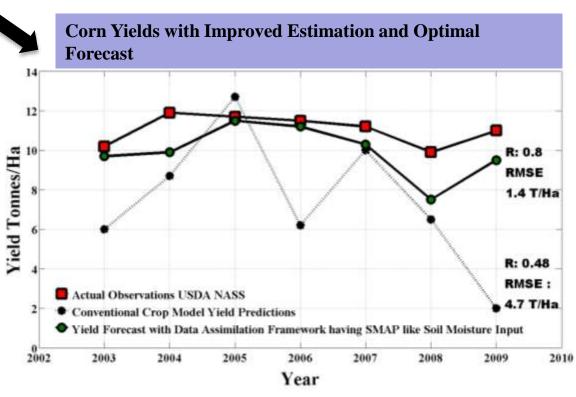
- Formed the SMAP Applications Working Group (150+ Members)
- 2. Developed the SMAP Applications Plan (right)
- 3. Hired a SMAP Applications Manager
- 4. Held SMAP Applications Workshops at User Home Sites (e.g., NOAA, USDA, USGS)
- Developed the "Early-Adopter" Program (30+ Members)



The SMAP Handbook

Chapters

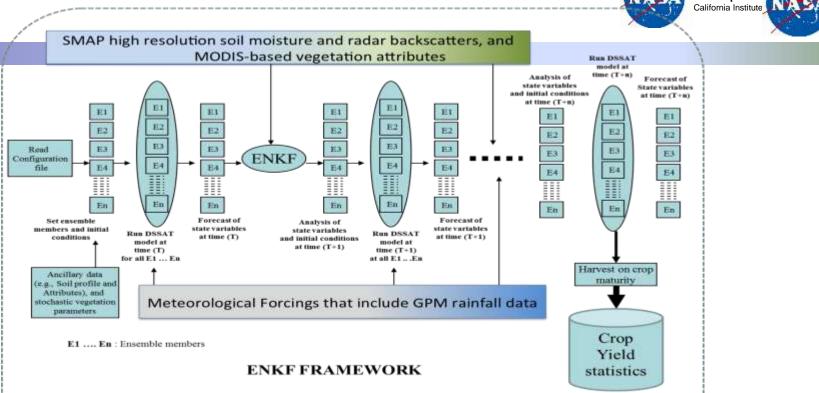

- Introduction and Background 1. 2. Mission Overview 3. Instrument Design and Data Products 4. Soil Moisture Data Products 5. The Value-Added Data L4_SM Product Carbon Cycle Data Products 6. 7. Calibration and Validation Plan **Applications and Applied Science** 8.
- 9. SMAP Project Bibliography


A Case Study Using SMAP-like Data

SMAP for Agricultural Crop Yield and Food Security Applications

Statement of Problem: The world faces an uphill struggle in feeding a projected nine to ten billion people by 2050.

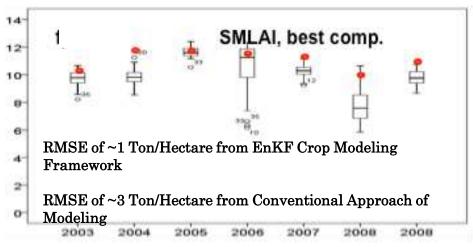
Jet Propulsion Laboratory California Institute of Technology



<u>Water</u> is the defining link between the climate and agriculture. To improve agricultural decision support systems and ensure <u>food security</u>, better quality and better use of <u>Soil Moisture/Water</u> information is vital.

This information will increase the lead time and skill of of crop yield forecasts.

Ines, Das et al., 2013. Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model for Maize Yield Prediction. RSE-D-12-00872R2: Remote Sensing of Environment. *In Press*


NASA/JPL Resources and Know-ho

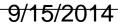
JPL agriculture system and data assimilation framework.

Promising results show significant improvement in crop yield estimation.

Reference[:] Ines, A.V.M., N.N. Das, J.W. Hansen, and E.G. Njoku. 2012, Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model , Remote Sensing of Environment, under review.

Jet Propulsio

- NASA SMAP mission in integration and testing (launch shipment October 2014)
- Launch manifested for January, 2015
- L-Band active-passive instruments meeting requirements and holding well
- Active-passive algorithm for high resolution (9 km) surface soil moisture estimation exercised and testing using heritage airborne and simulation testbed
- Developed error analysis tool for science product
- Aggressive RFI detection and mitigation hardware and software development
- Focused and planned effort to promote meaningful applications



Thanks

BACKUP

Not for public release or redistribution. This document has been reviewed and determined not to contain export controlled technical data.

Heterogeneity of Parameters

Subgrid scale (scale-M) variability in parameters

$$[\alpha(M) - \alpha(C)]$$
 and $[\beta(M) - \beta(C)]$

are related to vegetation and soil texture heterogeneities.

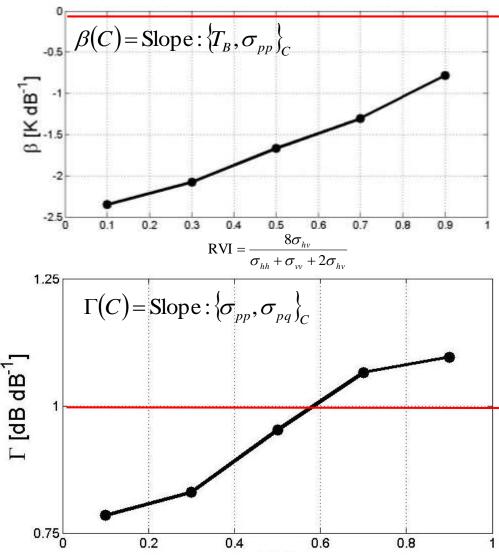
They are proportional to $\sigma_{pq}(M) - \sigma_{pq}(C)$ through the sensitivity:

$$\left.\frac{\partial \sigma_{pp}}{\partial \sigma_{pq}}\right|_{C} \equiv \Gamma(C)$$

Their partial contribution to $\sigma_{pp}(M)$ is $\Gamma(C) \cdot (\sigma_{pq}(M) - \sigma_{pq}(C))$

which in units of brightness temperature is:

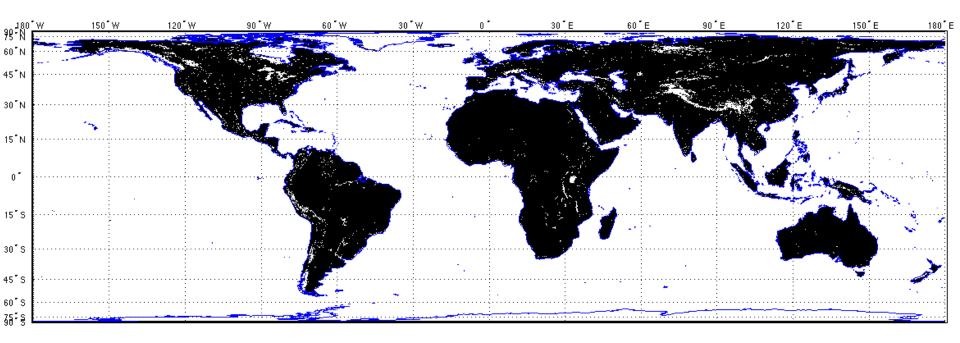
$$\beta(C) \cdot \left[\Gamma(C) \cdot \left(\sigma_{pq}(M) - \sigma_{pq}(C) \right) \right]$$


L2_SM_AP Radar-Radiometer Algorithm

T_B -disaggregation algorithm becomes:

$$T_{B_p}(M) = T_{B_p}(C) + \beta(C) \cdot \{ [\sigma_{pp}(M) - \sigma_{pp}(C)] - \Gamma(C) \cdot [\sigma_{pq}(M) - \sigma_{pq}(C)] \}$$

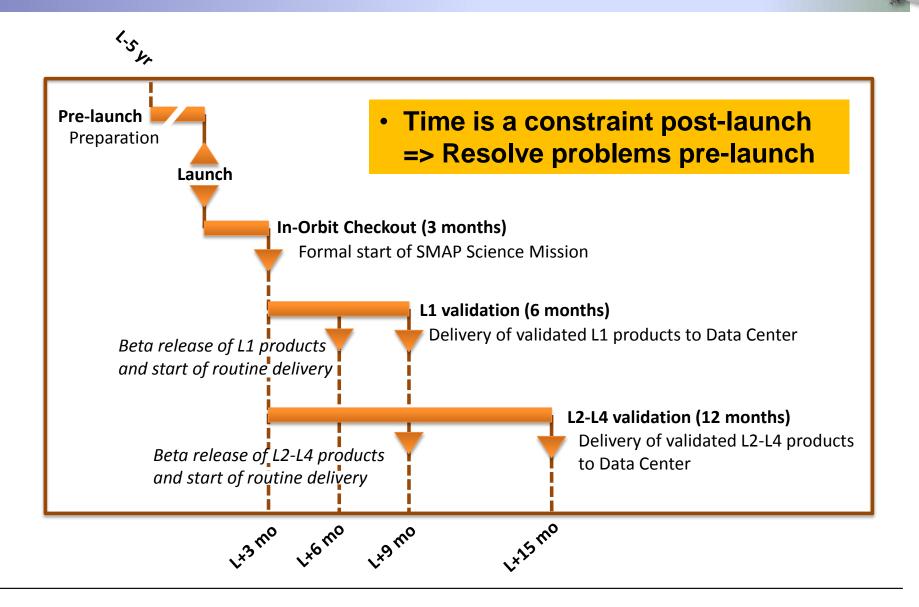
Based on PALS Observations From: SGP99, SMEX02, CLASIC and SMAPVEX08



 $T_B(M_j)$ is used to retrieve soil moisture at 9 km

SMAP Retrievable Mask at 9 km

Regions Where SMAP Soil Moisture Algorithms Will be Executed



Retrievable Mask (Black Colored Pixels) Prepared with Following Specifications:

- a) Urban Fraction < 1
- b) Water Fraction < 0.5
- c) DEM Slope Standard Deviation < 5 deg

SMAP Cal/Val Timeline

Not for public release or redistribution. This document has been reviewed and determined not to contain export controlled technical data.

How have Early Adopters benefited the SMAP Project?

- AER Inc. provided feedback on the *value* of the SMAP 3-day revisit and long time series and the suitability of SMAP products for mapping inundation related to quantification of greenhouse gas emissions
- NDMC provided *guidance* on soil moisture anomaly metrics that would work for drought monitoring applications
- Develop algorithms and tools for use of SMAP L1 data products for maritime applications (sea-ice, coastal salinity, high winds)

How has the SMAP Project benefited the Early Adopters?		ʻ13, ʻ14
Tested ingestion of SMAP simulated data into their operations:	8	3
Submitted applied research to the JHM Special Issue:	9	2

- Two North America agricultural monitoring agencies Canada AAFC and USDA NASS – have developed *prototypes* for integrating SMAP soil moisture products into their operational stream
- Data-denial experiments used to quantify impact of data on famine earlywarning and flood prediction agency applications

Jet Propulsion Laborator: California Institute of Technology L2_SM_AP Error Budget: T_B Formulation

Radiometer Brightness Temperature Uncertainty

Radar Backscatter Cross-Section Uncertainty

$$+b^{2}\left[\frac{10}{\ln 10}\right]^{2}\left[\frac{1}{N_{Land}^{3km\to9km}}\right]K_{pp_{3km}}^{2}+G^{2}K_{pq_{3km}}^{2}$$

Brightness Temperature Water-Body Correction Uncertainty

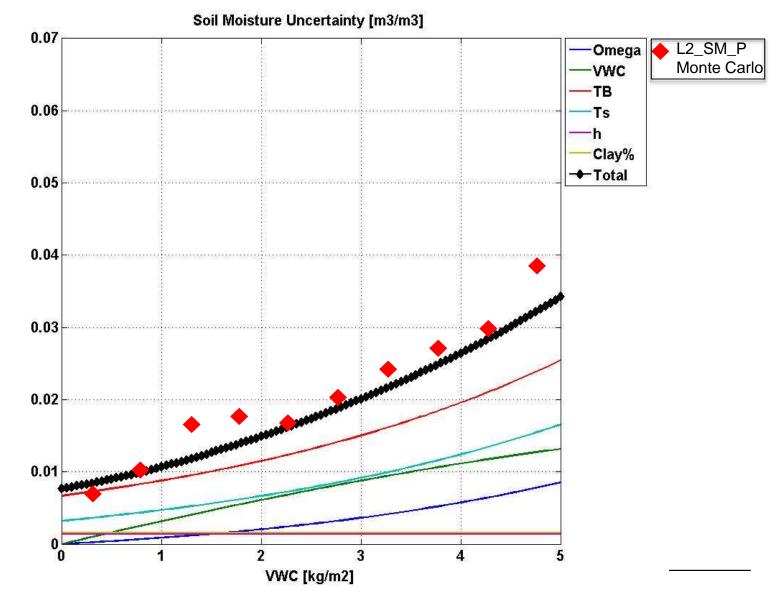
$$+\frac{\mathsf{D}_{f_{36km}}^{2}}{\left(1-f_{36km}\right)^{4}}\left[3\mathsf{D}_{f_{36km}}^{2}T_{B_{Water}}^{2}+\left(T_{B_{Land}}-T_{B_{Water}}\right)^{2}\right]$$

AP Algorithm Parameters (β, Γ) Uncertainty

$$+ D_{b}^{2} S_{pp_{9km}}^{2} + S_{pq_{9km}}^{2} \left[(b^{2} D_{G}^{2}) + (G^{2} D_{b}^{2}) \right]$$

RSS Disaggregated Brightness Temperature Uncertainty

$$= RSS_{T_{B_{q_{kn}}}}^2$$


where
$$D_{b}^{2} = \frac{1}{s_{T_{B}}^{2}(N_{w}-1)} \left[s_{T_{B}}^{2} + b^{2}s_{S_{pp}}^{2} - rbs_{T_{B}}s_{S_{pp}} + s_{T_{B}}^{2} + bs_{S_{pp}}^{2} \right]$$
 and $D_{G}^{2} = \frac{1}{s_{S_{pp}}^{2}(N_{3:36}-1)} \left[s_{S_{pp}}^{2} + G^{2}s_{S_{pp}}^{2} - rGs_{S_{pp}}s_{S_{pq}} + \frac{10^{2}}{\log^{2}10} \frac{K_{pp}^{2}}{N_{L}} + G^{2}\frac{10^{2}}{\log^{2}10} \frac{K_{pq}^{2}}{N_{L}} \right]$

Not for public release or redistribution. This document has been reviewed and determined not to contain export controlled technical data.

Comparisons

