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Advances in hydrological modeling

 Growth in computational power

 Availability of distributed hydrological Obs.

 Improved understanding of physics and 

dynamics of hydrologic system 

Complex hydrological models

Need of concrete methods to deal 
with increasing uncertainty in 

models and obs. 

 Address uncertainty:

- Understand

- quantify 

- reduce



Address uncertainty

Understand 

Various sources of 

uncertainty:

- Model structure 

- Parameters 

- Initial conditions 

- Observational data 

Present the predictions in terms of 

probability distribution

[performing probabilistic instead of 

deterministic prediction/modeling]

(1) Acquisition of more informative and higher quality data 

(2) Developing improved hydrological models                                                                       

(better representation of physical processes and mathematical techniques) 

(3) Development of techniques that can better extract and assimilate 

information from the available data via model identification and prediction 

Quantify

Reduce 

Data Assimilation (DA) methods 



Data Assimilation: Procedures that aim to produce physically 
consistent representations/ estimates of the dynamical behavior of a 
system by merging the information present in imperfect models and 
uncertain data in an optimal way to achieve uncertainty 
quantification and reduction. 

Observation errors Model

Assimilation Observations

Forcing

Improved 
Model Results 

Information on model errors 



 Parameter Estimation 

Deterministic approaches ( calibration method)

Stochastic approaches
(e.g. Generalized Likelihood Uncertainty Estimation(GLUE), 
Bayesian Recursive Estimation(BaRE) ) 

 State Estimation 

Kalman filtering [ e.g. Ensemble Kalman Filter] 

Particle filtering
(e.g.  bootstrap filtering, sequential Monte carlo(SMC),…)

Variational Data Assimilation (VDA) 
…..

 Different types of DA problems:   

 System(structure) 
Identification

Generalized likelihood uncertainty estimation (GLUE)
Bayesian model averaging (BMA) 
……

 Simultaneous State and Parameter Estimation

-Vruget et al.[2005]  Simultaneous Optimization and Data Assimilation(SODA)

- Moradkhani et al.[ 2005a,2005b] dual state-parameter estimation based on EnKF

- Joint state-parameter estimation-State augmentation [ e.g. Gelb, 1974; Drecourt et al., 2005]  



 Different DA problems may require different techniques/algorithms that best fit into 
the specific problem setting. 

Assimilation of Freeze/Thaw Observations into the NASA 
Catchment Land Surface Model

[ Farhadi, L., Reichle, R., De Lannoy, G. J. M., Kimball, J. (2014). Assimilation of Freeze/Thaw Observations into 
the NASA Catchment Land Surface Model, submitted to journal of hydrometeorology] 

Estimation of Land Surface Water and Energy Balance Parameters 
Using Conditional Sampling of Surface States

[Farhadi, L., Entekhabi, D., Salvucci, G., Sun, J. (2014). Estimation of Land Surface Water and Energy Balance 
Parameters Using Conditional Sampling of Surface States, Water Resources Research, 50(2), 1805-1822]

• State Estimation

• Parameter Estimation



 Different DA problems may require different techniques/algorithms that best fit into 

the specific problem setting. 

 Assimilation of Freeze/Thaw Observations into the NASA 

Catchment Land Surface Model

[ Farhadi, L., Reichle, R., De Lannoy, G. J. M., Kimball, J. (2014). Assimilation of Freeze/Thaw Observations into 

the NASA Catchment Land Surface Model, submitted to journal of hydrometeorology] 

Estimation of Land Surface Water and Energy Balance Parameters 

Using Conditional Sampling of Surface States

[Farhadi, L., Entekhabi, D., Salvucci, G., Sun, J. (2014). Estimation of Land Surface Water and Energy Balance 

Parameters Using Conditional Sampling of Surface States, Water Resources Research, 50(2), 1805-1822]

• State Estimation

• Parameter Estimation



 The land surface (F/T) state is a critical threshold that controls 

hydrological and carbon cycling and effects. 

 water and energy exchanges

 net primary productivity

 Growing season, Net Primary Productivity (NPP), Land- Atmosphere CO2 
exchange patterns shift as a result of Global warming , consistent with the patterns and 
changes in seasonal F/T dynamics.

Thus: 

 Improved representation of the landscape F/T state in land surface schemes is needed. 

 Assimilation of F/T index should improve the simulation of carbon and hydrological 
processes.

Assimilation of F/T Observations into the NASA Catchment Land Surface Model   

Introduction:

Figure: shows the SMMR-SSM/I daily combined AM/PM FT status for 9 April 2004. Areas colored 
in gray lie outside of the FT data set domain



 To update the GEOS-5 land data assimilation system with a

newly designed F/T assimilation module.

 To provide a framework for the assimilation of SMAP

(Soil Moisture Active Passive) F/T observations.

Assimilation of F/T Observations into the NASA Catchment Land Surface Model   

Objective:



 the observed F/T variable is essentially a binary observation ( not continuous)

 A rule based assimilation approach is proposed:

Assimilation of F/T Observations into the NASA Catchment Land Surface Model   

The New F/T Algorithm:

 If model forecast and observation disagree on F/T variable, model prognostic

variables are adjusted to match the observed F/T more closely.

 To account for model and observation errors, the delineation between frozen and

thawed regimes is defined with some uncertainty in the assimilation algorithm



F/T =f (Tsurf_nosnow, Tsnow, Tsoil)

= g( Teff ( effective temperature);  asnow ( snow cover fraction) )  

Assimilation of F/T Observations into the NASA Catchment Land Surface Model   
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Teff=(1-α)Tsoil+ α Tsurf_nosnow

 asnow : snow cover fraction(%) 

 asnow_threshold: depends on the microwave 

frequency of backscatter/Tb.

[Higher frequency-> lower threshold  and vice 

versa];  

F/T Detection Algorithm :  
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Observed F/T=-1 ( freeze)

F/T  Analysis Algorithm :  
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Assimilation of F/T Observations into the NASA Catchment Land Surface Model   

Observed F/T=1 ( Thaw)

F/T  Analysis Algorithm :  
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Blue region: Completely frozen
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 Area under investigation

45-55°N and 90-110°W 

Time period :

8 year (2002-2010)

 Grid: 

36 km EASE grid  ( 1137 grid cells)

 Design Setting: 

Assimilation of F/T Observations into the NASA Catchment Land Surface Model   

asnow Teff

asnow_threshold=10% Teff_threshold=0oC

UB_asnow=100% UB_Teff=1oC

LB_asnow=5% LB_Teff=-1oC

Experimental Setup:  



Assimilation of F/T Observations into the NASA Catchment Land Surface Model   

 Synthetic true F/T index:
Produced  by running the Catchment model using MERRA forcing

 Synthetic observed F/T index:
Produced  by applying classification error (CE)* to synthetic true data set.

 Open Loop ( No assimilation):
Produced  by running the Catchment model with GLDAS forcing.

 FT Analysis ( Data Assimilation): 
Produced  by performing FT analysis, using synthetic observation and running the 

Catchment model with GLDAS forcing.

CE

MaxCE

-10 oC 0 oC 10 oC

* We assume classification error 

as a function of Tsurf

Simulations:  

Tsurf



Assimilation of F/T Observations into the NASA Catchment Land Surface Model   

Max(CE)

Variables

0% 5% 10% 20%

Tsurf(K) 0.206* 0.192 0.178 0.149

Tsoil(K) 0.061** 0.049 0.036 0.006

Variables RMSE (K)

Tsurf (K) 3.08

Tsoil (K) 1.97 

RMSE ( Open loop vs. true; 2002-2010; 6am/pm local time)  

RMSE( OL. vs. true)- RMSE(FT analysis. vs. true)

*6.7%    RMSE reduction 

** 3.1% RMSE reduction 

Results:  

Open Loop (OL) F/T classification error= 4.87%



Assimilation of F/T Observations into the NASA Catchment Land Surface Model   

No classification error max(CE)=5% max(CE)=20%

Results:  



Assimilation of F/T Observations into the NASA Catchment Land Surface Model   

No classification error max(CE)=5% max(CE)=20%

Results:  
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Sensitivity of assimilation 

results to α   

Teff = (1-a)*Tsoil +a *TSurf

no-snow

Results:  



 An algorithm was developed for diagnosis of F/T state of soil in the NASA Catchment land
surface model.

 The Global Modeling and Assimilation Office ( GMAO)’s land data assimilation system in
offline mode was updated with the newly designed F/T assimilation module.

 The performance of the method for a synthetic experiment showed encouraging
improvements in skill of Tsoil and Tsurf.

 The average skill improvement reduces with increasing classification error on the observed
F/T index.

 Data Assimilation (DA) performance is sensitive to the α parameter.

( A realistic value for this parameter which is compatible with the effect of Tsurf and Tsoil in
determining remotely sensed soil F/T state, can improve the performance of DA method )

 This Freeze/Thaw assimilation module will be tested with satellite retrievals of F/T from
AMSR-E to test its performance at large scale.

Assimilation of F/T Observations into the NASA Catchment Land Surface Model   

Ultimate goal: Provide a framework for the assimilation of Soil Moisture Active 

Passive (SMAP) F/T observations into the NASA Catchment land surface 

model.

Conclusion: 



 Different DA problems may require different techniques/algorithms that best fit into 

the specific problem setting. 

Assimilation of Freeze/Thaw Observations into the NASA 

Catchment Land Surface Model

[ Farhadi, L., Reichle, R., De Lannoy, G. J. M., Kimball, J. (2014). Assimilation of Freeze/Thaw Observations into 

the NASA Catchment Land Surface Model, submitted to journal of hydrometeorology] 

 Estimation of Land Surface Water and Energy Balance 

Parameters Using Conditional Sampling of Surface States

[Farhadi, L., Entekhabi, D., Salvucci, G., Sun, J. (2014). Estimation of Land Surface Water and Energy Balance 

Parameters Using Conditional Sampling of Surface States, Water Resources Research, 50(2), 1805-1822]

• State Estimation

• Parameter Estimation
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• Links (and closure) for surface water and energy balance

Surface water & energy balance 

linked through latent Heat flux

The need for consistency

requires a closure function

Over bare soil this closure often can 

take the form of soil moisture (s)

dependent empirical functions:

In plant continuum, it often takes

the form of :  

1. Soil moisture-dependent root water extraction

resistance rg

2.        Stomatal resistance rs due to plant water stress
nEvaporatio Potential

nEvaporatio Actual
β(s)  .1 

interface atmosphere-soilat Humidity (s)h  .2 

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Motivation: 



• All Land Surface Models – LSMs include (explicitly or implicitly) a form of this 
closure.

• No matter how complex the closure function is, LSM’s still tend to produce an 
Evaporative fraction function which increases with Soil moisture or is insensitive to it

• Land response to radiative forcing and partitioning of available energy are critically 
dependent on the functional form (shape) of the closure relationship.

• The function affects the surface fluxes, the influence reaches through the boundary 
layer and manifests itself in the lower atmosphere weather

• Important as these closure functions are, they still remain essentially empirical and 
untested across diverse soil and vegetation conditions.
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Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Motivation: 




inR
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 The overarching goal of this project is to develop a scale free, calibration free technique 

to better estimate the unknown parameters (e.g. the flux components) of water and energy 

balance equation ( and the closure relation between the two) using discrete observation.

Estimation procedure is distinct from “calibration” since only forcing ( P,       ) and state (s, Ts) 

observations are used. No information about fluxes ( e.g. flux towers) is needed. 

The method is scale- free, i.e. it can be applied to diverse scales of states and forcing (remote 

sensing applications)

The method can be applied to diverse climates and land surface conditions using remotely 

sensed measurements. 

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Motivation: 
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The  approach is based on the conditional sampling method of Salvucci (2001) which exploits 

the fact that the expected value of increments of seasonally detrended soil moisture (s) 

conditioned on moisture is zero (E[ds/dt|s]=0) for stationary systems.

 [Mathematical proof: conditional expectation minimizes least squared loss function]

Model parameters (sum of evaporation and drainage) are estimated by matching the soil 

moisture conditional expectation of modeled fluxes to soil moisture conditional expectation of 

precipitation. (E[Sum of fluxes|s]=E[P|s])

 Problem in distinguishing evaporation from drainage 

Result of stationarity
E[ds/dt|s]=0

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Methodology: 
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 It can be proved that for seasonally (periodically) stationary process (Xt), The relation 

E[dXt/dt|Xt]=0 holds

Result of 
Stationarity 
E[dXt/dt|Xt]=0

Soil moisture (S) and soil surface temperature(Ts) are seasonally stationary, Thus: 

E[dS/dt|S]=0 and E[dTs/dt|Ts]=0

Thus by applying to the two balance equations we can separate out drainage from  

evaporation( Note: both hydrologic fluxes important but not measured widely)

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Methodology: 



CRDETP
dt

ds
l 

0 =

       E[P | s]- E[ET | s]+ E[D | s]- E[CR | s]

0 =

E R in

¯ |Ts
é
ë

ù
û- E[LE|Ts ]-E[H|Ts]-E[Pi.

pw

pw
(Ts-TD ) |Ts ]-E[es Ts

4 | Ts ]
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Example Moisture Diffusion Eq : Example Heat Diffusion Eq :

E[ds/dt|s]=0 E[dTs/dt|Ts]=0

 )TT(2HLER
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Process Unknown Par’s Form

Drainage Ks, c D(s)=Ks.s
c

Capillary rise w, n CR(s)=w.sn

Thermal Inertia Pi f( soil type, soil moisture)

Neutral turbulent heat 

coefficient  ( CHN)
α, β CHN= exp(αLAI+β) 

Evaporative Fraction                    

( EF=LH/(LH+H))
a,θs,θw EF=1-exp(-a(θ/ θs- θw/ θs)

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Methodology: 



 S and Ts are discretized to n and m ranges respectively
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 The cost function:

d :  Vector of data (n+m x1)

M: Vector of Model Counterparts (n+m x1)

A=σ-2I  (n+m x n+m )

Units:W/m2 

Forcing uncertainty:

 Note: Estimation procedure is distinct from “ calibration” since only forcing data ( P,       ) 

and state observation (s, Ts) are used. No information on fluxes ( e.g. Problematic evaporation 

and drainage) is needed.

Where:

n] w,c, ,K,P,C a,,,[:parametersUnknown 

       

siHNws 

        ,....|,|,.....,LPE:

 

2121 sins TRETREsLPEs in

 d

      




inR

       

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Methodology: 



- Minimize nonlinear Cost Function J

- Estimation of Uncertainty Bounds

 Inverse of Hessian of Cost function is an approximation for the Covariance matrix.

 Covariance matrix is used to estimate the uncertainty of any model output and thus 
determine which aspects of the model are poorly determined by the data 

 First Order Second Moment propagation of uncertainty ( FOSM) analysis,  or Monte 
Carlo method is used to define the uncertainty around different flux components.
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Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Methodology: 



 Determining the sufficiency of a particular data set to determine the model parameters

1- Uncertainty of each individual parameter should be reasonable in physical sense.

2-Uncertainty of the least well-determined combination of variables given by the eigenvectors of Hessian 

should be reasonable. 

3- Correlation matrix between unknown variables should be reasonable.

30

-Linear dependency between variables is a sign of discrepancy 

between data and model 

-Best scenario:  The correlation between all the parameters is small, 

-The next best scenario: High correlation is only between parameters representing 

one flux type and suggests the model is robust with regard to flux components 

-The worse scenario: The correlation between parameters representing different flux 

types is high and/ or physically not meaningful.

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Methodology: 



• 30 year of hourly meteorological data for humid climate of  Charlotte North Carolina 
obtained from “ Solar and Meteorological Surface Observational Network” (SAMSON) 
[National Climate Data Center]; 

• Simultaneous Heat and Water( SHAW) model was used to derive consistent hourly time 
series of state and fluxes 

• Assume 20% precipitation and radiation error.

• 8 unknown parameters  a = Ks,c,w,n,CHN  ,a,Sw,qs[ ]

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Synthetic test



2- Optimization with 8 unknown variables

 swHNs θSa CnwcK ,,,,,,,

32

 Data is insufficient to determine the model states with acceptable accuracy- linear dependency is generated as seen in the 

correlation matrix

 w~0;  its variation is high; 

in addition,  n is large,  Sn is very small ( 0<S<1)

Thus, WSn is negligible

 Due to high linearity btw “ Ks ,θs” and “ a, θs”

Taking θs out of the parameter space will improve 

the condition number of Hessian ;

( replace : θs ~ max( recorded θ) )

 This is not a sample correlation but derived from

Hessian and related to shape of J around minimum. 

Used for diagnosing collinearity and  has no 

statistical significance.



Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Synthetic test



 wHNs SaCCK ,,,,
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-Parameters are estimated  reasonably well 

-High correlation between Ks and C  is the sign of robust estimation of Drainage. 

Ks  increases Ks.Sc increases

C increases Ks.Sc   Decreases

-“CHN and a” parameters have negative Correlation; 

Increase in parameter “CHN” Increase in estimated sensible heat flux 

Decrease in parameter “ a”  Decrease in  estimated Latent heat flux

This result is physically meaningful, since the sum of sensible heat flux( H)  and Latent 

heat flux (LE) represent the available energy to the system ( Rn-G) and when the 

available energy to the system is constant, an increase in H results in a decrease in LE 

and vice versa.

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Synthetic test
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Comparing Actual EF and model estimate of EF
Comparing Actual /measured net soil water flux and its 

model counterpart 
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 The closure function EF(s)=LE/LE+H is well estimated in this synthetic data set 

 This approach is robust at point scale 

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Synthetic test



3 Field sites were investigated: 

 Vaira Ranch, grassland, CA,  Mediteranation climate

 Audubon Research ranch,  grassland, AZ, Arid/semi arid climate

 Santa Rita  Mesquite , woody savanna, AZ, Arid/semi arid climate
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Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Field site test



Source of Data ( estimation and validation)

- AMERIFLUX ( Tower data) 

Soil water content θ ; Wind speed( u), Air temperature (Ta), Soil surface Temperature (Ts),   

Precipitation ( P), Net radiation (Rn)

- MODIS ( Satellite data)   

LAI

 Error of data 

εE[ P|s]~ N(0, (6% E[ P|S])2);  εE[ Rin|s]~ N(0, (8% E[ Rin|Ts])
2); 
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Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Field site test
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 Vaira Ranch, grassland, CA
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 30 published  validations of  remote sensing based estimated  flux against ground based measurements of evapotranspiration

shows an average RMSE value of about 50  W/m2  (Kalma et al., 2008). 

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Field site test
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Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Field site test

• Distinct Closure function  



 The Gourma meso scale site in Mali of West Africa is an area located in the Gourma region. (14.5-17.5 ON, 
1-2 OW), 40,000 km2 area.

 Why this region

1- vast spatial and temporal coverage, remote sensing data which give access to surface variables in this 
area;

2- Gourma region is located in Sahara & Sahelian-Sahara climate; Evaporation is generally water limited             
( EF=EF(S)) ;

3- Runoff can be considered negligible in most areas; 
39

Reference [ AMMA Documentation]

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States

Remote sensing 



Var Definition Source of Data Spatial 

Resolution

Temporal 

Resolution

u Wind speed AMMA-ECMWF 50km 6hr

Ta Air Temp AMMA-ECMWF 50km 6hr

Rs Down Welling short wave SEVIRI 3km 15 min

α albedo SEVIRI 3km Daily

LAI Leaf Area Index SEVIRI 3km Daily

P Precipitation PERSIANN 4km hrly , daily

S Soil Moisture AMSR-E 25km 1:30 pm;1:30 am

Ts Surface Temperature SEVIRI 3km 15 min

TD Soil Deep Temperature Filtering Ts 3km 15 min

40

- 2008 data sets were selected. 

- Data were aggregated to present daily time step 

- Data are interpolated on a 3km*3km grid

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States



• In order to reduce dimensionality, USGS categorical soil maps are used to find common soil hydraulic 

parameters in similar regions ( alternative dimensionality reduction approaches can be applied) 
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Sand 

Loamy Sand 

Clay 

Loam ----

Clay

Loam

Loamy Sand 

Sand

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States



Sand region….

Sand pixels ~ 81% of the pixels corresponding to the 4 different soil categories) 

 ),,,, ws SaK   
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 Parameters are estimated robustly

 Correlation btwn different parameters 

is reasonable  & physically meaningful

Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States



Validating The results ….

 Agoufa flux tower site

 hourly H, LE, LE/(LE+H) 

• Soil type: Sand 

• Vegetation type: Grassland 

• Soil water content: AMSR-E data interpolation 
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Estimation of Land Surface Water and Energy Balance Parameters Using  

Conditional Sampling of Surface States



Validating the results …

 Map of water balance residual (runoff/runon) over the Gourma region
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 Yearly average water balance equation over all the pixels results in the map of runoff/ runon (+/-) 

 The errors in this estimation methodology manifests itself in the form of runoff/ run residuals

 The map of runoff/ runon corresponds well with the characteristics of Gourma region 
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Soil water potential increases between coarser to

finer soils.

 Higher water potential is a barrier to water

extraction, thus the rate of Evaporation from soils

with coarser texture is higher than from soils with

finer texture.

Validating the results …

 EF-SM relationship for different soils

SM(%) x100
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Day 190

Day 191

Day 192

Evaluating the results …

 Precipitation- Evaporation patterns   
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 Methodology developed to use both water and energy balance to constrain parameter 
estimation of surface energy and water balance

 Method is distinct from traditional calibration because it does not need flux 
information ( eg. problomatic drainage and evaporation data) to estimate parameters 

 Only forcing (P,      ) and states (s,Ts) used; hence scalable for remote sensing and 
mapping applications

 Feasibility demonstrated at point-scale with synthetic data (true parameters known for 
evaluation) and Ameriflux field site data 

 Application over West Africa using remote sensing shows feasibility of using satellite 
data to estimate effective values of important land surface model parameters 


inR
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Conclusion: 



 Coupling water, energy and carbon cycle ( improve climate predictions models)

Energy cycle Carbon cycle

Water Cycle 

Coupled through flux of Transpiration

Current & future work

Estimation of Land Surface Water and Energy Balance Parameters Using  
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Thank you for your attention


