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REALITY COMPLEX: UNCERTAINTY
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MODEL-DATA FUSION PROBLEM
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BAYESIAN ANALYIS

Thomas Bayes (1763). "An Essay towards solving a Problem in the Doctrine of Chances”,
Philosophical Transactions of the Royal Society of London, vol. 53, pp. 370-418.
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MONTE CARLO SIMULATION AND LIKELIHOOD
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TYPICALLY CANNOT BE ESTIMATED ANALYTICALLY
THUS, (MARKOV CHAIN) MONTE CARLO SAMPLING

STANDARD GAUSSTAN LIKELIHOOD FUNCTION

WHICH IS SIMILAR TO



DIFFERENTIAL EVOLUTION ADAPTIVE METROPOLIS

DREAM: Continuously Updates the Scale
and Orientation of the Proposal Distribution

Maintains Detailed Balance and is Ergodic
Handles Multimodality Efficiently
High-dimensionality
ESPECIALLY DESIGNED FOR PARALLEL COMPUTING

Vrugt et al.,
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Markov chain Mont2 Carlo (MCMC) methods have found
widespread Use in mary fiekls of study to estimae the average

roperties of complex sysems, and for posesrior inference n a
Blyomn framework. Existing theory and experments prove con-
vergence of well constuced MCMC schemes to the 8 oplu
limiting distribution under a variety of differant n
practice, howsver this comvergence is ofen observed to bn dis-
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MCMC approach is the random walk Metropelis (RWM) al gocithm
Asmume that we have already sompled points {xo, ... %z} this al-
gowithins proceeds in the following three seps  First, o condidoie
point 2 is sampled from o proposal distnbution § that depends on
ibe present location, x,— 3 and is symmeitric. g%y 2] = g(#,%:_1)
MNext, lh candidate point & either accepied or mpced uang the

turbingly slow. This s fisquencly caused by an S
lection of the proposal distribution usad 10 generats trial moves
in the Markay Chain. Here we show that significant improve-
ments to the efficiency of MCMC simulation can be made by using
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whee 7{-) denctes the probability density functicn (pdf) of the target
distribution. Finally, if the propesal is sccepied the chain moves oz,
the chain remmns o its curremt location X,

lis or DREAM, runs muk-
tipke difierent chains simuhaneous obal ex,
automatically tunes the scale and of N of the proposal dis- !
tritution during the search. y of the
nd varlous examples imvoiving nonlineariy, uqn-almemﬁ-my.
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Iu 1953, Mewepalis et al [28] introduced the Markor chun Monte
Cado (MCMC) scheme o estimate ELfix}. the expectatica of a
functicn f with p= gpect 10 a distribution = The basis of dus method
i5 o Markow chain that generaie s o random walk through the search
space and succes avely visits solutions with stable frequencies sem-
ming from o fixed probability distibution. The MCMC estimator &
approximated s the unweighted mean of £ slong the last M elements
of the realized poth of the chain. 4 10, f{x: ). that s, after o burn-
in peaoed to allow the chain to explore the search space and reach its

mgiee. This alzecithm has been used Iy in ma-
tizical phy sics, and appeared alsc in spotial statistics and statistical
image analysis. In [11] the MCMC method wee extended for pose-
nor inference in a Bayesion fromewock. Ever since, the methed has
found wide spoed e in many different fields maging from phu.u

The onginal KWM scheme is constructed 1o maintain detailed
lbalance with mspect to ={-} ai each sep in the chain
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whee p{x:—1) (p(2)] denctes the probability of finding the sysem
instate X;—3{z), ond p{xy -3 — 2} [p(2 — X, ]) denctes the condi-
wonal probabibity to perfoom a tmal move from x._1 toz (2 o X1}
The msultis a Markow chain which under some regularity conditions
hos o unique sationary distribotion with pdf =(-). Hastings [20] ex-
tended Eq. 1 to include non-sy mmetrical proposal distibutions, ie
@Xe-1,%) ¥ glz, %1} in which a proposal pamp to z and the re-
vere jump do pot have equal probability. This extension is called
the Metropclis Hastings algoaithm (MH ). and has become the basic
budding block of many existing MCMC sampling schermes

The simplicity of the original MH algorithm and the ortically
sound statistical basis of the method hes Jead 1o wide spread imple-
mentation and use However, in practice the MH algocithm requures
muning of some intemnal variables before the MCMC simulator works
propedy The efficiency of the method is essentally determined by
the scale and f the proposal di G{Xe-1,") used
to generde nal moves (tranations ) in the Markov Chain. When the
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DIFFERENTIAL EVOLUTION ADAPTIVE METROPOLIS
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1. Initialize Ndifferent Markov Chains; N> 3n
2. Create proposals in each chain 7 = 1,...,Naccording to:

' =60 +y(6,-0%)+e, rzr,zi ; y=24/2n

3. Compute the MeTropolis ratio, o/ in each chain 7= 1. N
a' =min(z(z")/ z(6.,),1)

4. If o/ > (0,1] set (9,{' = 7' otherwise remain at current point, H,f = 6’;'_1

r; and r, are chains, e is drawn from uniform distribution with small support
The choice of y should result in an acceptance probability of about 0.24
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SUBSPACE (METROPOLIS-WITHIN-GIBBS) SAMPLING [

IN HIGH-DIMENSIONS NOT OPTIMAL TO UPDATE ALL DIMENSIONS
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2. Create proposals in each chain 7/ = 1,..,N according to:
0l =0 +7(0"% -0 +e, rl=r2=i ; v=24//2n
3. Modify only selected dimensions with crossover probability CR
{0} if U<1-CR

ix =30 _ j=1..,d
0;. otherwise



EXAMPLE: 10-DIMENSIONAL BIMODALITY




APPLICATION TO WATERSHED HYDROLOGY

Schoups and Vrugt, WRR, 2010



WATERSHED MODEL CALIBRATION

Schoups and Vrugt, WRR (2010)



GENERALIZED LIKELIHOOD FUNCTION

A LIKELIHOOD FUNCTION
THAT TAKES BETTER
CONSIDERATION OF

NONTRADITIONAL ERROR

RESIDUAL DISTRIBUTIONS

U

FOR PROPER TREATMENT OF
UNCERTAINTY; A BETTER
ALTERNATIVE TO LEAST
SQUARES MODEL - DATA

SYNTHESIS

Schoups and Vrugt, WRR (2010)



GENERALIZED LIKELIHOOD FUNCTION

Schoups and Vrugt, WRR (2010)



POSTERIOR PARAMETER DISTRIBUTIONS

BLUE: STANDARD LEAST SQUARES

RED: GENERALIZED LIKELIHOOD FUNCTION Schoups and Vrugt, WRR (2010)



TREATMENT OF STATE UNCERTAINTY
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DATA ASSIMILATION USING PARTICLE-DREAM
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Vrugt et al., AWR, (2012)



SEQUENTTIAL BAYES LAW

MODEL FORMULATION (STATE-SPACE)

MEASUREMENT OPERATOR

SEQUENTIAL BAYES LAW (PARAMETERS ASSUMED KNOWN!)

Doucet and Johansen, 2011; Vrugt et al., AWR, (2012)



SEQUENTIAL MONTE CARLO (SMC) METHODS

Doucet and Johansen, 2011; Vrugt et al., AWR, (2012)



CRUX OF SMC: RESAMPLING

The SMC approach makes use of the following identity
Do(X1:¢[¥1:e) X Po(Xa:e-1|Y1:e-1 o (Xe|Xe—1)Lo (Ve [Xe )

RESAMPLING WITH DREAM AT t-1

WITH METROPOLIS ACCEPTANCE PROBABILITY

Vrugt et al., AWR, (2012)



RESAMPLING WITH DREAM

Vrugt et al., AWR, (2012)



PARTICLE - DREAM

PSEUDO-CODE OF PARTICLE-DREAM

BUT WHAT TO DO WITH PARAMETERS?

TWO DIFFERENT POSSIBILITIES

P-DREAMp = STATE AUGMENTATION

P-DREAM» = OUTSIDE DREAM LOOP
CAUTIONARY NOTE

VARIABLE PARAMETERS (STATE AUGMENTATION)
NOT RECOMMENDED!!

Vrugt et al., AWR, (2012)



Prediction error (RMSE) states

Prediction error (RMSE) parameters

BENCHMARK STUDY: LORENZ MODEL
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Number of particles (Ensemble size), p

PARAMETERS ADDED TO STATE VECTOR - NOT RECOMMENDED!

Vrugt et al., AWR, (2012)
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LORENZ MODEL: TRACE PLOTS AND MARGINAL DISTRIBUTIONS [l

Vrugt et al., AWR, (2012)



CASE STUDY: HYDROLOGIC MODEL

Vrugt et al., AWR, (2012)
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SOME OBSERVATIONS Lgl

PARTICLE FILTERS ARE STATISTICALLY SOUND (IF IMPLEMENTED
CORRECTLY!) BUT VERY INEFFICIENT

MANY PARTICLES ARE REQUIRED TO DERIVE STABLE STATE PDF. NOT
VIABLE FOR LARGE-SCALE AND REAL-TIME APPLICATION

RESAMPLING WITH MCMC AVOIDS PARTICLE COLLAPSE - BUT USE OF
LIKELIHOOD RATHER THAN DATA ITSELF LEADS TO SLOW
CONVERGENCE TO TARGET DISTRIBUTION.

STATE AUGMENTION NOT RECOMMENDED. PARAMETERS SHOW
WONDERFUL TIME VARIATIONS - BUT THESE RESULTS ARE
MEANINGLESS AND DUE TO INSUFFICIENT SAMPLE SIZE / POOR USE
OF STATISTICS

MANY STUDIES (ALSO FOR ENKF) USE SUBJECTIVE TUNING FACTORS
TO FORCE CONVERGENCE PARAMETER ENSEMBLE. THERE IS NO
STATISTICAL BASIS FOR THIS APPROACH. MCMC IS THE ONLY
FORMAL APPROACH



PARTICLE FILTER WITH ENKF UPDATE

DIRECTED UPDATED TOWARDS OBSERVATIONS

CAUTION: DETAILED BALANCE!!
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