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What data is available
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How streamflows predictions are i

presently made

* CEQUEAU
— Distributed rainfall-runoff model

— Requires daily precipitation and
max-min temperature =N

— Precipitation phase based on a T T
temperature threshold ‘ “““““““““““ r .

— Potential snowmelt using degree- : :
day
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e Short-term forecast

— Environment Canada weather e e
ensemble forecast used as input ;
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 Mid-term forecast (> 4 days) | " E!?: e
— Historical weather data used to
generate ensemble forecast i
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Ultimately what we want

 Compare streamflow predictions via data
assimilation (EnKF) of :
— Streamflows from hydrometric station
— Snow water equivalent (SWE) from snow pillows
— Global snow cover extent from MODIS sensors
— Combination of each
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Data assimilation methodology

t=t+1

Generate model ensemble

using CEQUEAU Observed weather data
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Questions to resolves

e How do we fix the ensemble size?

* How do we configure our state vector
— Which variables?
— Which parameters, if any?
— Do we localize correlations between variables?

e How do we make sure observation and model
errors are ok?
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First, a synthetic experiment

* Ensemble size sensitivity analysis
— Start with “most complicated case” for conservative

estimate

— Compare variance of metrics vs computing time
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First, a synthetic experiment

e State vector configuration analysis
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Before using real data

* How to specify model and observation errors :

— Many degrees of freedom, sensitivity analysis of
errors possible but tricky

— Adaptive approach based on analysis error
statistics promising (ex : Desroziers et al., 2005)

— Automatic calibration of errors using such post-
assimilation diagnostics (Trudel et al., 2014)
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* Recommendations for multivariate DA using EnKF

Conclusion

* Fixing the ensemble size

— Sensitivity analysis, start with most complicated case
for conservative estimate of ideal size

e Configuring state vector

— Sensitivity analysis, try adding and removing
variables/parameters to find best scenario

e Specifying observation and model errors

— Work in progress
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The Ensemble Kalman Filter (EnKF)

 Model ensemble propagated (no need to linearize)

e State of ensemble updated via model and
observation covariance matrices

e Covariance matrices computed from ensemble

X, = xp + BHT(HBHT + R) ™ (y — Hx)
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! © National Center for Atmospheric Research
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Kemano hydroelectric station
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drop
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