National Flood Interoperability Experiment

David R. Maidment,

University of Texas at Austin

Catchment-based Hydrological Data Assimilation (CAHMDA) VI Conference

8 September 2014

 Im
 <th

- Located on Tuscaloosa Campus of University of Alabama
- Operated by National Weather Service to support IWRSS partners (NWS, USGS, Corps of Engineers, FEMA)

Integrated Water Resources Science and Services (IWRSS)

Aligns multiple agencies with complimentary water related missions to:

- Integrate services and service delivery
- Improve river and flood forecasts
- Provide new summit-to-sea water resources analyses and forecasts
- Enable more effective use of resources

Integrated Water Resources **Roadmap Document** Science and Services (February 2009) (IWRSS) An Integrated and Adaptive Roadmap for Purpose, Scope, Operational Implementation Vision and Goals Haser Resources Sci. Cross-Don Cline, NOAA (Compliation) WRSS Workshop Participants (NOAA, USACE, USGS) Cutting Themes Cross-cutting Theme Teams for Human Dimensions an ervice Technical Information Services Regional Case Study Contributors National SUMMIT TO SEA and Regional Operations and Business Concept DRAFT VI.1 February, 2005

Slide: Ed Clark, NWS http://www.nohrsc.noaa.gov/~cline/IWRSS/IWRSS ROADMAP v1.0.pdf

NWS River Forecast Centers

Nationally Synthesize Operations of Regional River Forecast Centers

NATIONAL WATER CENTER

1

Inaugural Meeting – May, 2014

Overview: National Water Center (NWC)

Operations Center with Situation Rooms

Temporal information

 Establish common operating picture for floods to droughts; begin demonstration of hourly summit-to-sea analyses and forecasts of soil moisture, evapotranspiration, and snow pack; and expand demonstration of Real-Time Dynamic Flood Inundation Mapping portraying the extent, depth, and impacts of flood waters to enhance community resiliency and enable decision makers to mitigate the impacts of floods.

Geo-Intelligence Laboratory

Geospatial information

 Develop, implement and maintain state-of-the science enterprise Geographic Information Systems (GIS) to support NWS operations

National Water Data Infrastructure

Transformative Research (NSF)

Transformative research involves ideas, discoveries, or tools that radically change our understanding of an important existing scientific or engineering concept or educational practice or leads to the creation of a new paradigm or field of science, engineering, or education. Such research challenges current understanding or provides pathways to new frontiers.

http://www.nsf.gov/about/transformative_research/definition.jsp

How to move from evolutionary change to transformative change?

National Flood Interoperability Experiment (NFIE)

- Will be led by the academic community in collaboration with the IWRSS partners through the National Water Center
- Run from September 2014 to August 2015
- -Preparatory phase to May 2015
- -Summer Institute at the National Water Center, June to August 2015

NFIE Goal: Connect National Scale Flood Modeling with Local emergency planning and response

- 1. How can near-real-time hydrologic simulations at high spatial resolution, covering the nation, be carried out using the NHDPlus or next generation hydrofabric (e.g. data structure for hillslope, watershed scales)?
- 2. How can this lead to improved emergency response and community resilience?
 - How can an improved interoperability framework support the first two goals and lead to sustained innovation in the research to operations process?

Slide: Ed Clark, NWS

NFIE Academic Centers (as at present)

NFIE: Proposed Timeline

Subcommittee on Spatial Water Data and Open Water Data Initiative

Slide: Ed Clark, NWS (pre-decisional)

Flood hydrology and response

Forecast the flood elevation

Determine and plan for flood impact

Halloween Flood, Onion Creek, Austin, Texas, October 2013

AUSTIN

A flooded home location

Upstream watershed 280 mi² (larger than the City of Austin)

Watershed delineated using ESRI terrain services

FEMA Flood Hazard Zone

Mitigation and Response Flood Levels

Onion Creek at US 183, TX (ATIT2))ata Type Inundation Levels Flood Categories Current/Forecast Inundation Levels NAVD88 Stage 482.4 39.3 481.4 38.3 480.4 37.3 36.3 479.4

4/8.4	30.3
477.4	34.3
476.4	33.3
475.4	32.3
474.4	31.3
473.4	30.3
472.4	29.3
471.4	28.3
470.4	27.3
469.4	26.3
468.4	25.3
467.4	24.3
466.4	23.3
465.4	22.3
464.4	21.3
463.4	20.3
460.4	10.2
462.4 461.4	19.3 18.3

460.4

4594

458.4 15.3 = Extended rating

Minor Flooding Begins

17.3

16.3 15.3

(FEMA)

Mitigation (ft above NAVD88)

500 yr 490.34	
500 yr ^{490.34} 200 yr ^{487.88}	
200 yi 484 82	
100 yr ^{484.82}	
50 yr ^{481.24}	
25 yr ^{477.09}	
-	
10 yr ^{471.01}	
400.00	
5 yr ^{466.62}	
2 yr ^{460.30}	ľ
∠ yi	ľ

(NWS)

Response (Stage Height, ft)

Major Flood Stage: 24 Moderate Flood Stage: 20 Flood Stage: 17 Action Stage: 15

Real-Time Flood Inundation Mapping (USGS/NWS)

Use modeling to extend this concept to the whole country

http://water.weather.gov/ahps2/inundation/inundation_google.php?gage=atit2

NHDPlus Geospatial base for National Water Data Infrastructure

Rapid Model for flow on NHDPlus March to May 2008, 3 hour time steps

http://www.geo.utexas.edu/scientist/david/rapid.htm

Tavakoly et al. (201x), in preparation

David et al. (2011) DOI: 10.1175/2011JHM1345.1

GIS data describes 1.2 million river reaches . . .

... simulate flow in each reach in each time step

Dynamic downscaling of NWS River Forecasts

Linking NWS Flood Forecasts to FEMA National Flood Hazard Layer

Intersect NHDPlus Catchments with Flood Hazard Layer to get a flood warning zone for each catchment

"Dynamic Downscaling" of NWS River Forecasts to NHDPlus for Onion Creek

Water Map and Data Services

RAPID Streamflow Calculations – 47 NWS River Forecast basins downscaled to 5,175 NHDPlus catchments in San Antonio and Guadalupe basins

https://ut-austin.maps.arcgis.com/home/webmap/viewer.html?webmap=d107aa9260534ddbb96db302e3643a93

Integration of Map and Data Services

Open Geospatial Consortium

More than 400 companies and agencies globally

WaterML Web Services – CUAHSI, USGS, OGC, WMO

Water time series data on the internet

- <wml2:point>

- <wml2:MeasurementTVP>
 - <wml2:time>2014-05-11T21:30:00-05:00</wml2:time>
 <wml2:value>262.0</wml2:value>

</wml2:MeasurementTVP>

- </wml2:point>
- <wml2:point>
 - <wml2:MeasurementTVP>
 - <wml2:time>2014-05-11T21:35:00-05:00</wml2:time>
 <wml2:value>264.0</wml2:value>
 - </wml2:MeasurementTVP>
 - </wml2:point>

24/7/365 service For daily and real-time data

... Operational water web services system for the United States

http://waterservices.usgs.gov/nwis/iv/?format=waterml,2.0&sites=08158000&period=P1D¶meterCd=00060

Water Data Distribution by US Geological Survey

Open Water Data Initiative

- Subcommittee on Spatial Water Data will lead this effort
- This reports to both FGDC and ACWI

Anne Castle, Asst Secretary for Water and Science, Dept of Interior

Chair

Advisory Committee on Water Information

Open Water Data Components Open Water Web (applications) Open Water Data Infrastructure Ecological Integrity Drought Water Pollution Flood

Concept: Nate Booth, USGS

National Flood Interoperability Experiment Data Framework

Time Series (WaterML2 and .csv)

Temporal

Multidimensional Arrays (WCS and netCDF)

Hydrology (RFC Basins, NHDPlus Catchments)

Hydraulics (National Flood Hazard Layer, Flood Inundation Map Libraries)

Develop NWS Experimental Data

Services

NWS CHPS Modeling Units: 12 CONUS RFCs

Experimental distributed model (SAC-HTET)

XMRG

to

NetCDF

PI-XML to WaterML2

Export Data elements from the simulation workflow including:

- INFW Inflow to the "Channel"
- Mean Areal Precipitation (MAP)
- Reservoir Outflow (QINE) Slide: Ed Clark, NWS

Data Services – local runoff

(pre-decisional)

National Flood Interoperability Experiment Data Framework

Time Series (WaterML2 and .csv)

Temporal

Multidimensional Arrays (WCS and netCDF)

Hydrology (RFC Basins, NHDPlus Catchments)

Hydraulics (National Flood Hazard Layer, Flood Inundation Map Libraries)

Iowa Flood Information System Established after 2008 Iowa Flood

http://www.iowafloodcenter.org

New Maps - Columbus Junction

High resolution hydrologic modeling

State-wide coverage of high resolution modeling

Illinois

Nebraska,

In NFIE use WRF-Hydro/RAPID to do this for CONUS

Install water level sensors on the back of bridges (\$3000 per site)

11 III

C () ifis.iowafloodcenter.org/ifis/main/?v=b

Sioux City

Omahao

Bellevue

Pock Port

Develop a National Flood Sensor Network

Moines

Windson Heights

Crestor

Fremont

Geneseo

Galesburg

Kew

23

Wiot

Stitzer

Dubuque

Davenpor

Illinois City

Fairfield

Platteville

Beetown

Conclusions

- National Water Center is being established in Tuscaloosa, Alabama
- Offers an opportunity to do things differently in the future than in the past
- National Flood Interoperability Experiment (Sept 2014 to August 2015) to explore how to do this for flooding
- All are welcome to participate
- Possible National Drought Interoperability Experiment in 2015-2016