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Significance of Snow

Barnett et al., 2005, Nature
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Remote Sensing of Falling Snow

• Di�cult to measure
I ground-based observations can di↵er by &100%

• Snowflakes not all alike (non-spherical, dendritic)

• NEXRAD radar =) beam blocking in mountainous regions

• Satellite-based =) issues with pixel-scale variability

• Forward model results contain significant error / uncertainty
I Motivates hydrologic modeling with snow assimilation

Rasmussen et al., 2012, BAMS
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AMSR-E SWE Retrieval on March 1, 2004

AMSR-E SWE Retrieval

Canadian Meteorological Centre
Daily Snow Analysis ) “truth”

NASA Catchment model with
NASA MERRA forcing
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Snow Models are Good . . . But Not Great
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Research Motivation

• Snow is a significant contributor to terrestrial freshwater supply
I Vital resource for ⇠billion people worldwide

• Not exactly sure how much snow is out there
I Significant uncertainty

• Global warming ) rising snow line ) reduced virtual reservoir

• Existing satellite-based snow retrievals have limitations
I MODIS Visible ) primarily measures snow extent
I AMSR-E Microwave ) deep snow, wet snow, ice layers, forest

attenuation, etc.
I GRACE Gravimetry ) large spatial resolution, post-glacial

rebound

• Need for computationally e�cient measurement model operator

• Goal is to improve SWE at regional and continental scales
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California and Water

“Water. It’s about water.”

– Wallace Stegner

(response when asked by a journalist

“What is California about?”)
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California Drought and the Role of Snow

Lake storage and river runo↵ =) majority fed by snow melt
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Interannual Snow Variability

MODIS “true color” image showing snow covered area
(Figure courtesy of NASA)
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Declining Spring Snow Cover

Brown, 2000, Journal of Climate
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Declining Snow near Peak Accumulation

Analysis based on Rutgers Weekly Snow Cover Extent Product



CAHMDA-VI
Austin, TX

Sept. 8, 2014

Bart Forman

Background

Importance
Motivation

Existing Snow
DA Studies

DA Framework

AMSR-E

Experimental
Setup

Domain
Machine
Learning

Results

AMSR-E
Comparison
Time Series
Variability
Sensitivity
Gain Matrix
Remaining Issues

Conclusions

Traditional Point-Scale SWE Measurements

http://nationalatlas.gov/articles/climate/a_snow.html

http://nationalatlas.gov/articles/climate/a_snow.html
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Declining Snow Mass via Satellite Retrieval?

Takala et al., 2011, Rem. Sens. Environ.
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Snow Cover Extent Assimilation

Andreadis and Lettenmaier, 2006, Adv. in Water Resour.

SNOTEL Open Loop EnKF

Added value via assimilation limited to ablation (melt) season
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PMW SWE Retrieval Assimilation

De Lannoy et al., 2012, Water Resour. Res.

Conditioned estimate degraded via SWE retrieval assimilation
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PMW Tb Assimilation

Durand et al., 2009, Geophys. Res. Letters

Conducted using snow pit (⇠1 meter scale) observations
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GRACE Assimilation

Forman et al., 2012, Water Resour. Res.

Improvement in SWE estimate (and runo↵), but limited
by large spatial resolution and post-glacial rebound
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GRACE + Snow Cover Extent Assimilation

Su et al., 2010, J. Geophys. Res.

Multisensor (visible+gravimetric) framework improved SWE estimates
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Multisensor Assimilation Framework
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Vision for PMW Tb Assimilation

y+
i|{z}

posterior SWE

= y�
i|{z}

prior SWE

+ K|{z}
Kalman gain

[ ZTb|{z}
PMW Tb

� h(y�
i )| {z }

machine learning

]
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Snow Emission Model vs. Machine Learning
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Best Summed Up by Anonymous Reviewer

‘‘[At the continental scale,] the

strategy of using machine learning

to perform forward Tb estimation

is a good choice short of the

computationally-frightening idea of

using a physically-based forward

Tb model.’’

– Anonymous Reviewer
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AMSR-E Background

• Advanced Microwave
Scanning Radiometer EOS
(AMSR-E)

• Onboard the Aqua satellite

• Measures passive microwave
radiation

• Dual-polarized measurements
at multiple frequencies

• Twice daily estimates (utilize
nighttime only)

• Utilize ⇠25 km EASE grid
product

• Data record from 1 Sep 2002
to 1 Sep 2011 (9 years)

http://aqua.nasa.gov/reference/publications.php
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Experimental Setup: North America

Snow classification map [Sturm et al.,
1995].

Domain

• North America (north of
32�)

• 1 Sept. 2002 – 1 Sept. 2011

Model
• GEOS-5 Catchment model
• MERRA forcing

SVM Training Targets

• AMSR-E nighttime overpass
I 10.65, 18.7, and 36.5 GHz
I V- and H-polarization

Validation Approach
• AMSR-E “Jackknife approach”

(i.e., data not used during
training)
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Machine Learning Background

ANN Schematic

SVM Schematic

ANN Architecture (Forman et al., 2013)

• Single-layer, feed-forward perceptron
• Levenberg-Marquardt optimization

SVM Architecture (Forman and Reichle, 2014)

• Radial basis function using split-sample
training/validation

• LibSVM library courtesy of NTU

ANN / SVM Inputs
• Snow water equivalent; snow liquid water

content; temperature gradient index (proxy for
snow grain size); snow temperature and density
at multiple depths; near-surface soil, vegetative
canopy, and near-surface air temperatures

• Catchment snow coincident with NOAA IMS
Snow Cover product

ANN / SVM Outputs
• Tb at 10H, 10V, 18H, 18V, 36H, and 36V
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AMSR-E Comparison (9-year Study Period)

18.7 GHz, V-pol 36.5 GHz, V-pol
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Comparisons for All Frequencies/Polarizations

Tb predictions e↵ectively unbiased at all frequencies/polarizations
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AMSR-E Comparison (2003-2004 Season)
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Predictive Variability

• Variability computed as
spatial standard deviation
for each day, then averaged
over 9-years

• Snow classification derived
from Sturm et al., 1995
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Sensitivity Analysis of AMSR-E Tb Predictions

NSCTb, SWE =

✓
@Tb

@SWE

◆✓
SWE0

Tb,0

◆
u

✓
Tb,i � Tb,0

�SWE

◆✓
SWE0

Tb,0

◆

Increasing SWE �! decreasing Tb �! adheres to first-order physics
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Gain Matrix Example

via SVM via ANN

• y+
i|{z}

posterior

= y�
i|{z}

prior

+ K|{z}
Kalman gain

[ ZTb|{z}
AMSR-E

� h(y�
i )| {z }

via machine learning

]

• Computed gain on 6 February 2003 between modeled SWE and
SVM-derived �Tb=18V-36V

• For K ⇡ 10, if Zm � Zp
i ⇡ 1 K =) y+i � y�i ⇡ 1 cm

• Non-zero error covariance structure exists!
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via SVM via ANN

• y+
i|{z}

posterior

= y�
i|{z}
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+ K|{z}
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]
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i ⇡ 1 K =) y+i � y�i ⇡ 1 cm
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Potential Sources of Error

• Sub-grid scale lakes?

• Sub-grid scale sea ice (coastal regions only)?

• Vegetation e↵ects?

• Soil moisture e↵ects?

• Depth hoar evolution?

• Internal ice layer(s) and/or ice crust(s)?
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Research Summary

• LSM predictions possess skill due to improved forcings

• SVM predictions are relatively unbiased at all frequencies/H or V

• Domain-averaged RMSE . 8 K at all frequencies/H or V

• Significant skill at predicting inter-annual variability

• Predictive capability during accumulation (dry snow) and
ablation (wet snow) phases

• Issues with ice layer(s) and sub-grid scale lake ice

• Computationally e�cient

• Bridge spatial / temporal scales between PWM Tb and GRACE

• E↵ectively add vertical resolution to GRACE TWS

• Multiple frequencies/polarizations allow for flexibility in DA
framework

I Transferable methodology to SSM/I and AMSR2
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Thank You.

Questions and/or Comments?

Partial financial support provided by the
NASA New Investigator Program (NNX14AI49G)
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