

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background

Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup Domain

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue Towards Multisensor Snow Assimilation: A Simultaneous Radiometric and Gravimetric Framework

Bart Forman

Assistant Professor, University of Maryland Department of Civil and Environmental Engineering

September 8th, 2014

Significance of Snow

Bart Forman

Importance

Existing Snov DA Studies

DA Framework AMSR-E

Experimenta Setup

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

Barnett et al., 2005, Nature

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background

Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue • Difficult to measure

- \blacktriangleright ground-based observations can differ by ${\gtrsim}100\%$
- Snowflakes not all alike (non-spherical, dendritic)
- NEXRAD radar \Longrightarrow beam blocking in mountainous regions
- Satellite-based \implies issues with pixel-scale variability
- Forward model results contain significant error / uncertainty
 - Motivates hydrologic modeling with snow assimilation

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

- Background
- Importance Motivation
- Existing Snow DA Studies
- DA Framework AMSR-E
- Experimenta Setup
- Domain
- Learning
- Results
- AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue
- Conclusions

- Difficult to measure
 - \blacktriangleright ground-based observations can differ by ${\gtrsim}100\%$
- Snowflakes not all alike (non-spherical, dendritic)
- NEXRAD radar \implies beam blocking in mountainous regions
- Satellite-based \implies issues with pixel-scale variability
- Forward model results contain significant error / uncertainty
 - Motivates hydrologic modeling with snow assimilation

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

- Background
- Importance Motivation
- Existing Snow DA Studies
- DA Framework AMSR-E
- Experimenta Setup
- Domain
- Machine Learning
- Results
- AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

- Difficult to measure
 - ▶ ground-based observations can differ by $\geq 100\%$
- Snowflakes not all alike (non-spherical, dendritic)
- NEXRAD radar \implies beam blocking in mountainous regions
- Satellite-based \implies issues with pixel-scale variability
- Forward model results contain significant error / uncertainty
 - Motivates hydrologic modeling with snow assimilation

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

- Background
- Importance Motivation
- Existing Snow DA Studies
- DA Framework AMSR-E
- Experimenta Setup
- Domain
- Machine Learning
- Results
- AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue
- Conclusions

- Difficult to measure
 - ▶ ground-based observations can differ by $\geq 100\%$
- Snowflakes not all alike (non-spherical, dendritic)
- NEXRAD radar \implies beam blocking in mountainous regions
- Satellite-based \implies issues with pixel-scale variability
- Forward model results contain significant error / uncertainty
 - Motivates hydrologic modeling with snow assimilation

- CAHMDA-VI Austin, TX Sept. 8, 2014
- Bart Forman
- Background
- Importance Motivation
- Existing Snow DA Studies
- DA Framework AMSR-E
- Experimenta Setup
- Machine
- Learning
- Results
- AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

- Difficult to measure
 - ground-based observations can differ by $\gtrsim 100\%$
- Snowflakes not all alike (non-spherical, dendritic)
- NEXRAD radar \implies beam blocking in mountainous regions
- Satellite-based \Longrightarrow issues with pixel-scale variability
- Forward model results contain significant error / uncertainty
 - Motivates hydrologic modeling with snow assimilation

AMSR-E SWE Retrieval on March 1, 2004

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background

Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimental Setup

Machine

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

Conclusions

0.2 0.25

SWE [m]

AMSR-E SWE Retrieval

Canadian Meteorological Centre Daily Snow Analysis \Rightarrow "truth"

NASA Catchment model with NASA MERRA forcing

Snow Models are Good ... But Not Great

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background

Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup Domain

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

SWE near peak accumulation on 01-Mar-2009 (n=442)

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

- Snow is a significant contributor to terrestrial freshwater supply
 Vital resource for ~billion people worldwide
- Not exactly sure how much snow is out there
 - Significant uncertainty
- Global warming \Rightarrow rising snow line \Rightarrow reduced virtual reservoir
- Existing satellite-based snow retrievals have limitations
 - ▶ MODIS Visible ⇒ primarily measures snow extent
 - ▷ AMSR-E Microwave ⇒ deep snow, wet snow, ice layers, forest attenuation, etc.
 - ► GRACE Gravimetry ⇒ large spatial resolution, post-glacial rebound
- Need for computationally efficient measurement model operator
- Goal is to improve SWE at regional and continental scales

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

- Snow is a significant contributor to terrestrial freshwater supply
 - Vital resource for ~billion people worldwide
- Not exactly sure how much snow is out there
 - Significant uncertainty
- Global warming \Rightarrow rising snow line \Rightarrow reduced virtual reservoir
- Existing satellite-based snow retrievals have limitations
 - ▶ MODIS Visible ⇒ primarily measures snow extent
 - ▷ AMSR-E Microwave ⇒ deep snow, wet snow, ice layers, forest attenuation, etc.
 - ► GRACE Gravimetry ⇒ large spatial resolution, post-glacial rebound
- Need for computationally efficient measurement model operator
- Goal is to improve SWE at regional and continental scales

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimental Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

- Snow is a significant contributor to terrestrial freshwater supply
 - Vital resource for ~billion people worldwide
- Not exactly sure how much snow is out there
 - Significant uncertainty
- Global warming \Rightarrow rising snow line \Rightarrow reduced virtual reservoir
- Existing satellite-based snow retrievals have limitations
 - ▶ MODIS Visible ⇒ primarily measures snow extent
 - ▷ AMSR-E Microwave ⇒ deep snow, wet snow, ice layers, forest attenuation, etc.
 - ► GRACE Gravimetry ⇒ large spatial resolution, post-glacial rebound
- Need for computationally efficient measurement model operator
- Goal is to improve SWE at regional and continental scales

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

- Snow is a significant contributor to terrestrial freshwater supply
 - Vital resource for ~billion people worldwide
- Not exactly sure how much snow is out there
 - Significant uncertainty
- Global warming \Rightarrow rising snow line \Rightarrow reduced virtual reservoir
- Existing satellite-based snow retrievals have limitations
 - ► MODIS Visible ⇒ primarily measures snow extent
 - ► AMSR-E Microwave ⇒ deep snow, wet snow, ice layers, forest attenuation, etc.
 - ► GRACE Gravimetry ⇒ large spatial resolution, post-glacial rebound
- Need for computationally efficient measurement model operator
- Goal is to improve SWE at regional and continental scales

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

- Snow is a significant contributor to terrestrial freshwater supply
 - Vital resource for ~billion people worldwide
- Not exactly sure how much snow is out there
 - Significant uncertainty
- Global warming \Rightarrow rising snow line \Rightarrow reduced virtual reservoir
- Existing satellite-based snow retrievals have limitations
 - ► MODIS Visible ⇒ primarily measures snow extent
 - ► AMSR-E Microwave ⇒ deep snow, wet snow, ice layers, forest attenuation, etc.
 - ► GRACE Gravimetry ⇒ large spatial resolution, post-glacial rebound
- Need for computationally efficient measurement model operator
- Goal is to improve SWE at regional and continental scales

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

- Snow is a significant contributor to terrestrial freshwater supply
 - Vital resource for ~billion people worldwide
- Not exactly sure how much snow is out there
 - Significant uncertainty
- Global warming \Rightarrow rising snow line \Rightarrow reduced virtual reservoir
- Existing satellite-based snow retrievals have limitations
 - ► MODIS Visible ⇒ primarily measures snow extent
 - ► AMSR-E Microwave ⇒ deep snow, wet snow, ice layers, forest attenuation, etc.
 - ► GRACE Gravimetry ⇒ large spatial resolution, post-glacial rebound
- Need for computationally efficient measurement model operator
- Goal is to improve SWE at regional and continental scales

California and Water

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimenta Setup

Machine

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue "Water. It's about water."

- Wallace Stegner

(response when asked by a journalist "What is California about?")

California Drought and the Role of Snow

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experiment Setup Domain Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issues Conclusions

Lake storage and river runoff \Longrightarrow majority fed by snow melt

Interannual Snow Variability

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimenta Setup Domain Machine

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issues

Conclusions

MODIS "true color" image showing snow covered area (Figure courtesy of NASA)

Declining Spring Snow Cover

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Frameworl AMSR-E

Experimenta Setup

Machine

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

Brown, 2000, Journal of Climate

Declining Snow near Peak Accumulation

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Sno DA Studies

DA Framework AMSR-E

Experimen Setup Domain Machine

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

Analysis based on Rutgers Weekly Snow Cover Extent Product

Traditional Point-Scale SWE Measurements

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimenta Setup Domain Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issues

http://nationalatlas.gov/articles/climate/a_snow.html

Declining Snow Mass via Satellite Retrieval?

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Sno DA Studies

DA Framework AMSR-E

Experiment Setup Domain

Machine

Results AMSR-E

Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

Conclusions

NOTE: Snow mass estimates **exclude** mountainous terrain

Takala et al., 2011, Rem. Sens. Environ.

Snow Cover Extent Assimilation

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup Domain Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issues Conclusions

Added value via assimilation limited to ablation (melt) season

PMW SWE Retrieval Assimilation

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup Domain

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

Conclusions

De Lannoy et al., 2012, Water Resour. Res.

Conditioned estimate degraded via SWE retrieval assimilation

PMW T_b Assimilation

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experiment Setup Domain Machine

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu Durand et al., 2009, Geophys. Res. Letters

Conducted using snow pit (\sim 1 meter scale) observations

GRACE Assimilation

Forman et al., 2012, Water Resour. Res.

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu Conclusions

Open-Loop Ensemble Range - - Open-Loop Ensemble Mean Data Assimilation Ensemble Range - Data Assimilation Ensemble Mean GRACE TWS Retrieval (±1 Standard Deviation) 800 750 700 Terrestrial 600 Water ŝ Storage 350 01/01/2003 01/01/2005 01/01/2007 01/01/2009 «OL> --- "OL ---- "DA · CMC Snow 120 Water Equivalent SWE 11 01/01/2003 01/01/2005 01/01/2007 01/01/2009

Improvement in SWE estimate (and runoff), but limited by large spatial resolution and post-glacial rebound

GRACE + Snow Cover Extent Assimilation

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimen Setup Domain Machine

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

Multisensor (visible+gravimetric) framework improved SWE estimates

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework

AMSR-E

Experimenta Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

Experiment #1

Open Loop no assimilation (baseline)

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework

AMSR-E

Experimenta Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

Conclusions

Experiment #1

Open Loop

no assimilation (baseline)

Experiment #2

SVM-derived Tb predictions

PMW Tb assimilation via SVM to improve SWE

Remaining Is

Vision for PMW T_b Assimilation

Sensitivity Gain Matrix

. . . .

Vision for PMW T_b Assimilation

Snow Emission Model vs. Machine Learning

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework

AMSR-E

Experiment Setup Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

Snow Emission Model vs. Machine Learning

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework

AMSR-E

Experiment Setup Domain Machine

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

Snow Emission Model vs. Machine Learning

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework

AMSR-E

Experimenta Setup Domain

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

Global land surface models lack the fidelity required by snow emission model

Best Summed Up by Anonymous Reviewer

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework

AMSR-E

Experimenta Setup

Machine

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

Conclusions

''[At the continental scale,] the strategy of using machine learning to perform forward T_b estimation is a good choice short of the **computationally-frightening** idea of using a physically-based forward T_b model.''

- Anonymous Reviewer

AMSR-E Background

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimenta Setup Domain Machine

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

- Advanced Microwave Scanning Radiometer EOS (AMSR-E)
- Onboard the Aqua satellite
- Measures passive microwave radiation
- Dual-polarized measurements at multiple frequencies
- Twice daily estimates (utilize nighttime only)
- Utilize ~25 km EASE grid product
- Data record from 1 Sep 2002 to 1 Sep 2011 (9 years)

http://aqua.nasa.gov/reference/publications.php

Experimental Setup: North America

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimental Setup

Domain

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

Conclusions

Snow classification map [*Sturm et al.*, 1995].

Domain

- North America (north of 32°)
- 1 Sept. 2002 1 Sept. 2011

Model

- GEOS-5 Catchment model
- MERRA forcing

SVM Training Targets

- AMSR-E nighttime overpass
 - 10.65, 18.7, and 36.5 GHz
 - V- and H-polarization

Validation Approach

 AMSR-E "Jackknife approach" (i.e., data not used during training)

Machine Learning Background

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimental Setup

Domain

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

ANN Schematic

SVM Schematic Input I1 I2 I3 I1 Map 0 0 0 0 Mapced (01) (02) (04) 0 0 Dot Products (01) (02) (03) (02) (03) 0 Weights 0 (01) (02) (03) (03) (03) (04)

ANN Architecture (Forman et al., 2013)

- Single-layer, feed-forward perceptron
- Levenberg-Marquardt optimization

SVM Architecture (Forman and Reichle, 2014)

- Radial basis function using split-sample training/validation
- LibSVM library courtesy of NTU

ANN / SVM Inputs

- Snow water equivalent; snow liquid water content; temperature gradient index (proxy for snow grain size); snow temperature and density at multiple depths; near-surface soil, vegetative canopy, and near-surface air temperatures
- Catchment snow coincident with NOAA IMS Snow Cover product

ANN / SVM Outputs

• T_b at 10H, 10V, 18H, 18V, 36H, and 36V

AMSR-E Comparison (9-year Study Period)

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimenta Setup

Machine

Results

AMSR-E Comparison

Time Series Variability Sensitivity Gain Matrix Remaining Issues

Comparisons for All Frequencies/Polarizations

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimenta Setup Domain

Machine Learning

Results

AMSR-E Comparison

Time Series Variability Sensitivity Gain Matrix Remaining Issue

 T_b predictions effectively unbiased at all frequencies/polarizations

AMSR-E Comparison (2003-2004 Season)

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimenta Setup Domain

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue Relatively shallow snow (max. SWE = 0.07 cm) and limited forest cover (forest fraction = 0.01)

Relatively deep snow (max. SWE = 0.22 cm) and thick forest cover (forest fraction = 0.42)

Predictive Variability

CAHMDA-VI Austin, TX Sept. 8, 2014

- Bart Forman
- Background Importance Motivation
- Existing Snow DA Studies
- DA Framework AMSR-E
- Experimenta Setup Domain
- Machine Learning
- Results
- AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining
- Conclusions

- Variability computed as spatial standard deviation for each day, then averaged over 9-years
- Snow classification derived from *Sturm et al.*, 1995

Sensitivity Analysis of AMSR-E T_b Predictions

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimenta Setup Domain

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

Sensitivity Analysis of AMSR-E T_b Predictions

Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimenta Setup Domain

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

Conclusions

Increasing SWE \longrightarrow decreasing $T_b \longrightarrow$ adheres to first-order physics

Gain Matrix Example

Non-zero error covariance structure exists!

Gain Matrix Example

- For $\mathbf{K} \approx 10$, if $Z^m Z^p_i \approx 1 \ \mathbf{K} \Longrightarrow y^+_i y^-_i \approx 1 \ \mathbf{cm}$
 - Non-zero error covariance structure exists!

Gain Matrix Example

- For $\mathbf{K} \approx 10$, if $Z^m Z^p_i \approx 1 \ \mathbf{K} \Longrightarrow y^+_i y^-_i \approx 1 \ \mathbf{cm}$
- Non-zero error covariance structure exists!

Potential Sources of Error

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

- Background Importance Motivation
- Existing Snow DA Studies
- DA Framework AMSR-E
- Experimental Setup
- Domain Machine
- Learning
- Results
- AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issues
- Conclusions

- Sub-grid scale lakes?
- Sub-grid scale sea ice (coastal regions only)?
- Vegetation effects?
- Soil moisture effects?
- Depth hoar evolution?
- Internal ice layer(s) and/or ice crust(s)?

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimental Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

Conclusions

• LSM predictions possess skill due to improved forcings

• SVM predictions are relatively unbiased at all frequencies/H or V

- Domain-averaged $RMSE\lesssim$ 8 K at all frequencies/H or V
- Significant skill at predicting inter-annual variability
- Predictive capability during accumulation (dry snow) and ablation (wet snow) phases
- Issues with ice layer(s) and sub-grid scale lake ice
- Computationally efficient
- Bridge spatial / temporal scales between PWM T_b and GRACE
- Effectively add vertical resolution to GRACE TWS
- Multiple frequencies/polarizations allow for flexibility in DA framework
 - Transferable methodology to SSM/I and AMSR2

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimental Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

- LSM predictions possess skill due to improved forcings
- SVM predictions are relatively unbiased at all frequencies/H or V
- Domain-averaged $RMSE\lesssim$ 8 K at all frequencies/H or V
- Significant skill at predicting inter-annual variability
- Predictive capability during accumulation (dry snow) and ablation (wet snow) phases
- Issues with ice layer(s) and sub-grid scale lake ice
- Computationally efficient
- ullet Bridge spatial / temporal scales between PWM T_b and GRACE
- Effectively add vertical resolution to GRACE TWS
- Multiple frequencies/polarizations allow for flexibility in DA framework
 - Transferable methodology to SSM/I and AMSR2

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimental Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

- LSM predictions possess skill due to improved forcings
- SVM predictions are relatively unbiased at all frequencies/H or V
- Domain-averaged $RMSE \lesssim$ 8 K at all frequencies/H or V
- Significant skill at predicting inter-annual variability
- Predictive capability during accumulation (dry snow) and ablation (wet snow) phases
- Issues with ice layer(s) and sub-grid scale lake ice
- Computationally efficient
- ullet Bridge spatial / temporal scales between PWM T_b and GRACE
- Effectively add vertical resolution to GRACE TWS
- Multiple frequencies/polarizations allow for flexibility in DA framework
 - Transferable methodology to SSM/I and AMSR2

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimental Setup

Domain

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

- LSM predictions possess skill due to improved forcings
- SVM predictions are relatively unbiased at all frequencies/H or V
- Domain-averaged $RMSE \lesssim$ 8 K at all frequencies/H or V
- Significant skill at predicting inter-annual variability
- Predictive capability during accumulation (dry snow) and ablation (wet snow) phases
- Issues with ice layer(s) and sub-grid scale lake ice
- Computationally efficient
- ullet Bridge spatial / temporal scales between PWM T_b and GRACE
- Effectively add vertical resolution to GRACE TWS
- Multiple frequencies/polarizations allow for flexibility in DA framework
 - Transferable methodology to SSM/I and AMSR2

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimental Setup

Domain Machine

Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

- LSM predictions possess skill due to improved forcings
- SVM predictions are relatively unbiased at all frequencies/H or V
- Domain-averaged $RMSE \lesssim$ 8 K at all frequencies/H or V
- Significant skill at predicting inter-annual variability
- Predictive capability during accumulation (dry snow) and ablation (wet snow) phases
- Issues with ice layer(s) and sub-grid scale lake ice
- Computationally efficient
- ullet Bridge spatial / temporal scales between PWM T_b and GRACE
- Effectively add vertical resolution to GRACE TWS
- Multiple frequencies/polarizations allow for flexibility in DA framework
 - Transferable methodology to SSM/I and AMSR2

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimental Setup

Machine

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

- LSM predictions possess skill due to improved forcings
- SVM predictions are relatively unbiased at all frequencies/H or V
- Domain-averaged $RMSE \lesssim$ 8 K at all frequencies/H or V
- Significant skill at predicting inter-annual variability
- Predictive capability during accumulation (dry snow) and ablation (wet snow) phases
- Issues with ice layer(s) and sub-grid scale lake ice
- Computationally efficient
- $lacksymbol{\bullet}$ Bridge spatial / temporal scales between PWM T_b and GRACE
- Effectively add vertical resolution to GRACE TWS
- Multiple frequencies/polarizations allow for flexibility in DA framework
 - Transferable methodology to SSM/I and AMSR2

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimental Setup

Machine

Learning

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

- LSM predictions possess skill due to improved forcings
- SVM predictions are relatively unbiased at all frequencies/H or V
- Domain-averaged $RMSE \lesssim$ 8 K at all frequencies/H or V
- Significant skill at predicting inter-annual variability
- Predictive capability during accumulation (dry snow) and ablation (wet snow) phases
- Issues with ice layer(s) and sub-grid scale lake ice
- Computationally efficient
- lackstyle Bridge spatial / temporal scales between PWM T_b and GRACE
- Effectively add vertical resolution to GRACE TWS
- Multiple frequencies/polarizations allow for flexibility in DA framework
 - Transferable methodology to SSM/I and AMSR2

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimental Setup

Machine

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

- LSM predictions possess skill due to improved forcings
- SVM predictions are relatively unbiased at all frequencies/H or V
- Domain-averaged $RMSE \lesssim$ 8 K at all frequencies/H or V
- Significant skill at predicting inter-annual variability
- Predictive capability during accumulation (dry snow) and ablation (wet snow) phases
- Issues with ice layer(s) and sub-grid scale lake ice
- Computationally efficient
- Bridge spatial / temporal scales between PWM T_{b} and GRACE
- Effectively add vertical resolution to GRACE TWS
- Multiple frequencies/polarizations allow for flexibility in DA framework
 - Transferable methodology to SSM/I and AMSR2

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimental Setup

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issu

- LSM predictions possess skill due to improved forcings
- SVM predictions are relatively unbiased at all frequencies/H or V
- Domain-averaged $RMSE \lesssim$ 8 K at all frequencies/H or V
- Significant skill at predicting inter-annual variability
- Predictive capability during accumulation (dry snow) and ablation (wet snow) phases
- Issues with ice layer(s) and sub-grid scale lake ice
- Computationally efficient
- Bridge spatial / temporal scales between PWM T_b and GRACE
- Effectively add vertical resolution to GRACE TWS
- Multiple frequencies/polarizations allow for flexibility in DA framework
 - Transferable methodology to SSM/I and AMSR2

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snow DA Studies

DA Framework AMSR-E

Experimental Setup

Machine

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Iss

- LSM predictions possess skill due to improved forcings
- SVM predictions are relatively unbiased at all frequencies/H or V
- Domain-averaged $RMSE \lesssim$ 8 K at all frequencies/H or V
- Significant skill at predicting inter-annual variability
- Predictive capability during accumulation (dry snow) and ablation (wet snow) phases
- Issues with ice layer(s) and sub-grid scale lake ice
- Computationally efficient
- Bridge spatial / temporal scales between PWM T_{b} and GRACE
- Effectively add vertical resolution to GRACE TWS
- Multiple frequencies/polarizations allow for flexibility in DA framework
 - Transferable methodology to SSM/I and AMSR2

CAHMDA-VI Austin, TX Sept. 8, 2014

Bart Forman

Background Importance Motivation

Existing Snov DA Studies

DA Framework AMSR-E

Experimenta Setup

Machine Learning

Results

AMSR-E Comparison Time Series Variability Sensitivity Gain Matrix Remaining Issue

Conclusions

Thank You. Questions and/or Comments?

Partial financial support provided by the NASA New Investigator Program (NNX14AI49G)

